Bulletin officiel spécial n°3 du 17 mars 2011

Physique-chimie en classe de 1ère des séries STI2D et STL

NOR : MENE1104128A
arrêté du 8-2-2011 - J.O. du 25-2-2011
MEN - DGESCO A3-1


Vu code de l'Éducation ; arrêté du 27-5-2010 ; avis du comité interprofessionnel consultatif du 4-2-2011 ; avis du CSE du 9-12-2010 

Article 1 - Le programme de l'enseignement de physique-chimie en classe de première des séries sciences et technologies de l'industrie et du développement durable (STI2D) et sciences et technologies de laboratoire (STL) est fixé conformément à l'annexe du présent arrêté.
 
Article 2 - Les dispositions du présent arrêté entrent en application à la rentrée de l'année scolaire 2011-2012.
 
Article 3 - Le directeur général de l'enseignement scolaire est chargé de l'exécution du présent arrêté qui sera publié au Journal officiel de la République française.
 
Fait le 8 février 2011

Pour le ministre de l'Éducation nationale, de la Jeunesse et de la Vie associative
et par délégation,
Le directeur général de l'enseignement scolaire,
Jean-Michel Blanquer

 
Annexe
Physique-chimie - classe de première des séries technologiques STI2D et STL
Objectifs
Les objectifs et les démarches de l'enseignement de physique et chimie du tronc commun des séries STI2D et STL se situent dans le prolongement de l'initiation aux sciences physiques et chimiques entreprise au collège puis en classe de seconde. Au travers de l'apprentissage de la démarche scientifique, cet enseignement vise l'acquisition ou le renforcement, chez les élèves, de connaissances des lois et des modèles physiques et chimiques fondamentaux, de compétences expérimentales et d'une méthodologie de résolution de problèmes dans les domaines en lien avec les technologies industrielles ou de laboratoire, sans spécialisation excessive. Il doit permettre aux élèves d'accéder à des poursuites d'études supérieures scientifiques et technologiques dans de nombreuses spécialités et d'y réussir, puis de faire face aux évolutions scientifiques et technologiques qu'ils rencontreront dans leurs activités professionnelles. L'accent est donc mis sur l'acquisition d'une culture scientifique, de notions et de compétences pérennes pouvant être réinvesties dans le cadre d'une formation tout au long de la vie.
Depuis des siècles, les sciences ont contribué à apporter des réponses aux problèmes qui se sont posés à l'humanité et l'ont aidée à relever de véritables défis en contribuant largement au progrès technique ; elles permettent de mieux comprendre le monde complexe qui est le nôtre et ses modes de fonctionnement, notamment ceux qui résultent de la technologie omniprésente.
Dans les séries technologiques STI2D et STL, les programmes d'enseignement privilégient une approche thématique ouverte sur les réalités contemporaines, permettant d'articuler les connaissances et les capacités fondamentales en les contextualisant. Cette démarche permet  d'identifier des phénomènes et propriétés relevant du champ des sciences physiques et chimiques dans des réalisations technologiques, de préciser les problèmes qu'elles ont permis de résoudre, de mettre en évidence le rôle qu'elles ont joué dans l'élaboration des objets ou des systèmes simples, complexes ou innovants actuels, de souligner la place qu'elles peuvent et doivent tenir pour faire face aux grands défis de société.
Complémentairement, une mise en perspective historique fournit l'occasion de faire ressortir comment les allers-retours entre la technologie et les sciences physiques et chimiques ont permis de formidables inventions, découvertes et innovations scientifiques et technologiques. Celles-ci ont conduit à la réalisation de progrès techniques tout autant que de grandes avancées intellectuelles dans l'intelligibilité du monde réel.
De même que la science n'est pas faite de vérités intangibles et immuables, la technologie est en perpétuelle évolution. Qu'il s'agisse de la compréhension du monde pour le chercheur, ou de la conception de nouveaux dispositifs pour l'ingénieur, leurs activités procèdent de démarches intellectuelles analogues ; il s'agit pour eux, à partir d'un questionnement, de rechercher des réponses ou des solutions à un problème, de les enrichir et de les faire évoluer avec le temps pour les rendre plus efficientes. Ces procédures entre travail conceptuel, modélisation et expérimentation constituent des composantes de la démarche scientifique. 
Initier l'élève à la démarche scientifique, c'est lui permettre de développer des compétences nécessaires pour prendre des décisions raisonnables et éclairées dans les nombreuses situations nouvelles qu'il rencontrera tout au long de sa vie et, ainsi, le conduire à devenir un adulte libre, autonome et responsable.
Ces compétences nécessitent la maîtrise de capacités qui dépassent largement le cadre de l'activité scientifique :
- faire preuve d'initiative, de ténacité et d'esprit critique ;
- confronter ses représentations avec la réalité ;
- observer en faisant preuve de curiosité ;
- mobiliser ses connaissances, rechercher, extraire et organiser l'information utile fournie par une situation, une expérience ou un document ;
- raisonner, démontrer, argumenter, exercer son esprit d'analyse.
La modélisation est une composante essentielle de la démarche scientifique. Elle a pour objectif de représenter une réalité (en la simplifiant souvent) et de prévoir son comportement. Les activités pédagogiques proposées amènent l'élève à associer un modèle à un phénomène, à connaître ses conditions de validité. Les résultats expérimentaux sont analysés et confrontés aux prévisions d'un modèle, lui-même travaillé grâce à des simulations qui peuvent à leur tour permettre de proposer des expérimentations.
Autre composante essentielle de la démarche scientifique, la démarche expérimentale joue un rôle fondamental dans l'enseignement de la physique et de la chimie. Elle établit un rapport critique avec le monde réel, où les observations sont parfois déroutantes, où des expériences peuvent échouer, où chaque geste demande à être maîtrisé, où les mesures - toujours entachées d'erreurs aléatoires quand ce ne sont pas des erreurs systématiques - ne permettent de déterminer des valeurs de grandeurs qu'avec une incertitude qu'il faut pouvoir évaluer au mieux. La maîtrise de la précision dans le contexte des activités expérimentales est au coeur de l'enseignement de la physique et de la chimie. Elle participe à l'éducation des élèves à la construction d'une vision critique des informations données sous forme numérique, à la possibilité de les confronter à une norme, éducation indispensable pour l'évaluation des risques et la prise de décision.
Les activités expérimentales menées par les élèves sont un moyen d'appropriation de techniques, de méthodes, mais aussi de notions et de concepts. Associée à un questionnement inscrit dans un cadre de réflexion théorique, l'activité expérimentale, menée dans l'environnement du laboratoire, conduit notamment l'élève à s'approprier la problématique du travail à effectuer, à maîtriser l'environnement matériel (à l'aide de la documentation appropriée), à justifier ou à proposer un protocole, à mettre en œuvre un protocole expérimental en respectant les règles de sécurité. L'élève doit porter un regard critique sur les résultats en identifiant les sources d'erreurs et en estimant l'incertitude sur les mesures.
L'activité expérimentale offre un cadre privilégié pour susciter la curiosité de l'élève, pour le rendre autonome et apte à prendre des initiatives et pour l'habituer à communiquer en utilisant des langages et des outils pertinents.
Ainsi, l'approche expérimentale ne peut se concevoir que si les conditions indispensables à une activité concrète, authentique et en toute sécurité sont réunies.
La pratique scientifique nécessite l'utilisation d'un langage spécifique. L'élève doit donc pouvoir :
- s'exprimer avec un langage scientifique rigoureux ;
- choisir des unités adaptées aux grandeurs physiques étudiées ;
- utiliser l'analyse dimensionnelle ;
- évaluer les ordres de grandeur d'un résultat.
Ces compétences sont indissociables des compétences mathématiques nécessaires. De plus, en devant présenter la démarche suivie et les résultats obtenus, l'élève est amené à pratiquer une activité de communication susceptible de le faire progresser dans la maîtrise des compétences langagières, orales et écrites, en langue française, mais aussi en anglais, langue de communication internationale dans le domaine scientifique.
L'usage adapté des Tic
La physique et la chimie fournissent naturellement l'occasion d'acquérir des compétences dans l'utilisation des Tic, certaines étant spécifiques à la discipline et d'autres d'une portée plus générale.
Outre la recherche documentaire, le recueil des informations, la connaissance de l'actualité scientifique, qui requièrent notamment l'exploration pertinente des ressources d'internet, l'activité expérimentale doit s'appuyer avec profit sur l'expérimentation assistée par ordinateur, la saisie et le traitement des mesures.
L'automatisation de l'acquisition et du traitement des données expérimentales peut ainsi permettre de dégager du temps pour la réflexion, en l'ouvrant aux aspects statistiques de la mesure et au dialogue entre théorie et expérience.
La simulation est l'une des modalités de la démarche scientifique susceptible d'être mobilisée par le professeur ou par les élèves eux-mêmes.
L'usage de caméras numériques, de dispositifs de projection, de tableaux interactifs et de logiciels généralistes ou spécialisés doit être encouragé.
Les travaux pédagogiques et les réalisations d'élèves gagneront à s'insérer dans le cadre d'un environnement numérique de travail (ENT), au cours ou en dehors des séances.
Il faudra toutefois veiller à ce que l'usage des Tic, comme auxiliaire de l'activité didactique, ne se substitue pas à une activité expérimentale directe et authentique.
Outre les sites ministériels, les sites académiques recensent des travaux de groupes nationaux, des ressources thématiques (Édubase), des adresses utiles sur les usages pédagogiques des Tic.
Présentation du programme
Pour des raisons d'efficacité pédagogique, le questionnement scientifique, prélude à la construction des notions et des concepts, se déploiera à partir d'objets techniques, professionnels, familiers ou à partir de procédés simples ou complexes, emblématiques du monde contemporain. Cette approche crée un contexte d'apprentissage stimulant, susceptible de mobiliser les élèves autour d'activités pratiques, et permettant de développer des compétences variées. Cela fournira aussi l'occasion de montrer comment les sciences physiques et chimiques peuvent contribuer à une meilleure prise de conscience des enjeux environnementaux et à l'éducation au développement durable.
Le programme est construit autour de trois concepts-clés de physique et de chimie l'énergie, la matière et l'information.
L'énergie est au cœur de la vie quotidienne et de tous les systèmes techniques. Les grandes questions autour des « économies d'énergie » et plus largement de développement durable ne peuvent trouver de réponse qu'avec une maîtrise de ce concept et des lois qui lui sont attachées. Le programme permet, à travers de nombreux exemples, de mettre en évidence les notions de conservation et de qualité (et donc de dégradation) de l'énergie, les notions de transfert d'énergie, de conversion d'énergie et de rendement.
Pour ce qui concerne la matière, omniprésente sous forme minérale ou organique, qu'elle soit d'origine naturelle ou synthétique, le programme enrichit les modèles relatifs à sa constitution et à ses transformations. À travers l'étude de différents matériaux rencontrés dans la vie courante sont abordées les notions de liaisons, de macromolécules et d'interactions intermoléculaires pour rendre compte de propriétés macroscopiques spécifiques. Les transformations de la matière abordent les problématiques liées à la synthèse, les bilans de matière (lois de conservation) et les différents effets associées aux transformations physiques, chimiques et nucléaires (transfert thermique, travail électrique, rayonnement, travail mécanique). Les élèves sont sensibilisés au risque chimique et à la sauvegarde de l'environnement.
La prise d'information, son traitement et son utilisation sont présentes dans quasiment tous les dispositifs que ce soit pour l'optimisation de l'utilisation des ressources dans l'habitat ou dans le transport, pour l'aide à la conduite, ou dans le diagnostic médical. L'étude des chaînes d'information sera l'occasion de montrer que celle-ci peut être transportée par différentes grandeurs physiques, de faire le lien entre les capteurs et les lois physiques mises en œuvre, d'étudier la structure d'une chaîne d'information.
Ces concepts sont introduits à travers quatre thèmes :
- habitat : ce thème donne la possibilité d'étudier la gestion de l'énergie (sous forme électrique, thermique, solaire, chimique), l'éclairage, les fluides et la communication ;
- vêtement et revêtement : ce thème donne l'occasion de s'intéresser à l'obtention des polymères. Il aborde quelques-unes des propriétés innovantes de ces matériaux mises en relation avec leur structure microscopique ;
- transport : ce thème permet de mettre en place les outils nécessaires à l'étude du mouvement d'un véhicule, d'étudier différents types de motorisation (thermique et électrique), ainsi que des dispositifs de sécurité et d'assistance à la conduite ;
- santé : l'étude des outils du diagnostic fournit l'opportunité d'aborder les ondes sonores, les ondes électromagnétiques et la radioactivité. La prévention est abordée par le biais de l'étude des antiseptiques et des désinfectants et des dispositifs de protection pour les yeux et les oreilles.
L'objectif est de montrer que des lois importantes régissent le comportement d'objets ou de systèmes et permettent de prévoir des évolutions et des états finaux : lois de conservation de la matière et de l'énergie.
Ces thèmes font parfois appel aux mêmes concepts. Le professeur peut ainsi réinvestir, dans d'autres contextes, les connaissances et les capacités déjà introduites et travaillées lors de l'étude d'un autre thème.
Ce programme est présenté selon deux colonnes intitulées :
- Notions et contenus : il s'agit des notions et des concepts scientifiques à construire ;
- Capacités : il s'agit des capacités que les élèves doivent maîtriser en fin de cycle.
Il convient de ne pas procéder à une lecture linéaire de ce programme, mais de proposer une progression qui :
- s'appuie sur les acquis des élèves au collège et en seconde, ce qui peut nécessiter la mise en place d'une évaluation diagnostique ;
- est organisée autour des thèmes ;
- vise la mise en œuvre par les élèves des compétences présentées ci-dessus.
 
Partager cette page
  • Envoyer à un ami
  • Facebook
  • Twitter
  • Imprimer
  • Agrandir / réduire la police

C'est officiel

Consultez les dates des vacances scolaires.
Le calendrier scolaire

Consultez les textes réglementaires publiés chaque jeudi.
Le Bulletin officiel

Nouveaux rythmes scolaires

Votre enfant est à l'école primaire ? Vous avez des questions sur les nouveaux horaires à la rentrée 2014 ?

Rendez-vous sur le site d'information

5matinees.education.gouv.fr




Une sélection de services répondant aux besoins des élèves, des parents et des enseignants

capture d'écran webreportage petit vivier

5 matinées c'est mieux pour apprendre : les parents et les enseignants racontent

Découvrez le webreportage