

BULLETIN OFFICIEL DU MINISTÈRE DE LA JEUNESSE, DE L'ÉDUCATION NATIONALE ET DE LA RECHERCHE

• Utilisation d'un formulaire de mathématiques pendant l'enseignement et au moment des épreuves de mathématiques pour certains BTS à compter de la session 2003

C. 2. 200

JORMULAIRES DE MATHÉMATIQUES BTS

Utilisation d'un formulaire de mathématiques pendant l'enseignement et au moment des épreuves de mathématiques pour les BTS faisant l'objet des groupements A, B, C et D et hors groupements, à compter de la session 2003

N.S. n° 2003-032 du 27-2-2003 (NOR : MENS0300394N)

FORMULAIRES DE MATHÉMATIQUES

VI BTS: Groupement A

- Contrôle industriel et régulation automatique
- Électronique
- Électrotechnique
- Génie optique
- Informatique industrielle
- Techniques physiques pour l'industrie et le laboratoire

XIII BTS: Groupement B

- Aménagement finition
- Assistance technique d'ingénieur
- Bâtiment
- Conception et réalisation de carrosseries
- Construction navale
- Constructions métalliques
- Domotique
- Enveloppe du bâtiment : facades-étanchéité
- Études et économie de la construction
- Fluides-énergies-environnements
- Géologie appliquée
- Industries graphiques : communication graphique
- Industries graphiques : productique graphique
- Maintenance et après-vente automobile
- Maintenance et après-vente des engins de travaux publics et de manutention
- Maintenance et exploitation des matériels aéronautiques
- Maintenance industrielle
- Mécanique et automatismes industriels
- Microtechniques
- Moteurs à combustion interne
- Productique mécanique
- Traitement des matériaux
- Travaux publics

XVIII Additifs au formulaire de mathématiques pour certaines spécialités du groupement B

Chacun de ces additifs ne doit être annexé au sujet que si celui-ci comporte un exercice relatif à la partie du programme considérée.

L'additif 1 ne concerne que les spécialités de BTS du groupement B pour lesquels le programme comporte une étude des séries de Fourier.

L'additif 2 ne concerne que les spécialités de BTS du groupement B pour lesquels le programme comporte une étude de la loi de Weibull.

XXI BTS: Groupement C

- Agro-équipement
- Charpente-couverture
- Étude et réalisation d'outillages de mise en forme des matériaux
- Industries céramiques
- Industries céréalières
- Industries des matériaux souples
- Industries papetières
- Mise en forme des alliages moulés
- Mise en forme des matériaux par forgeage
- Productique bois et ameublement
- Productique textile
- Réalisation d'ouvrages chaudronnés
- Systèmes constructifs bois et habitat

XXVI BTS: Groupement D

- Analyses biologiques
- Biochimiste
- Biotechnologie
- Hygiène-propreté-environnement
- Métiers de l'eau
- Peintures, encres et adhésifs
- Plasturgie
- Qualité dans les industries alimentaires et les bio-industries

XXXI BTS: Agencement de l'environnement architectural

BTS: Assistant en création industrielle

XXXV BTS : Comptabilité et gestion des organisations

XXXVII BTS : Chimiste

BTS: Conception de produits industriels

XLV BTS : Géomètre-topographe
XLIX BTS : Informatique de gestion

BTS: Opticien-lunetier

UTILISATION D'UN FORMULAIRE DE MATHÉMATIQUES PENDANT L'ENSEIGNEMENT ET AU MOMENT DES ÉPREUVES DE MATHÉMATIQUES POUR LES BTS FAISANT L'OBJET DES GROUPEMENTS A, B, C ET D ET HORS GROUPEMENTS, À COMPTER DE LA SESSION 2003

N.S. n° 2003-032 du 27-2-2003 NOR : MENS0300394N

RLR: 544-4a MEN - DES A8

Texte adresé aux rectrices et recteurs d'académie; aux vice-recteurs; aux inspectrices et inspecteurs d'académie, directrices et directeurs des services départementaux de l'éducation nationale

■ Vous voudrez bien trouver en annexe à la présente note de service, les nouveaux formulaires de mathématiques concernant les brevets de technicien supérieur cités en objet.

L'arrêté du 8 juin 2001, qui présente dans son annexe le programme de mathématiques et qui en définit l'épreuve, précise que l'utilisation du formulaire de mathématiques pendant les cours et au moment de l'examen est autorisée au même titre que celle des instruments de calcul et de dessin.

Cette disposition résulte de l'objectif assigné à l'enseignement des mathématiques au niveau de

formation qui est celui des techniciens supérieurs. Il consiste à fournir aux étudiants les outils nécessaires pour suivre avec profit les enseignements de sciences physiques, de technologie, d'économie, de gestion et d'informatique, tout en contribuant au développement de la formation scientifique. Compte tenu de cet objectif, il n'est pas apparu indispensable que les candidats aient à apprendre un certain nombre de formules portant sur les fonctions usuelles, et les lois de probabilité. Outre qu'elle place les candidats dans les conditions voisines de celles rencontrées dans leur vie professionnelle, cette disposition permet d'apprécier leur capacité à utiliser efficacement une documentation.

Elle évite également que les résultats obtenus ne soient trop liés aux performances de

mémorisation des calculatrices dont disposent les candidats. En effet, les calculatrices que l'on trouve sur le marché et autorisées aux examens ont des capacités de mémorisation de ces formules très variables : les modèles les plus perfectionnés sont ceux dont le prix est le plus élevé, ce qui est de nature à introduire des inégalités entre les candidats. La mise à disposition de ces formulaires qui constituent l'outil de base suffisant pour le niveau d'exigence en mathématiques de ces brevets de technicien supérieur doit donc être aussi considérée comme une mesure d'équité.

Vous veillerez à ce que la présente note de service soit diffusée dans les meilleurs délais dans les établissements concernés (publics, privés sous contrat, privés hors contrat), afin que chaque candidat dispose d'un délai suffisant pour être en possession d'un exemplaire du formulaire de mathématiques correspondant à sa formation et puisse ainsi se familiariser avec son utilisation.

Un formulaire de mathématiques identique à celui annexé à la présente note de service est distribué à chaque candidat en annexe du sujet de mathématiques.

L'utilisation de tout autre formulaire est interdite.

Cette disposition entre en application à compter de la session 2003 pour les spécialités de brevet de technicien supérieur faisant l'objet des groupements A, B, C et D et pour les spécialités hors groupement. Les dispositions des précédentes sessions restent en vigueur pour les autres spécialités.

Cette note annule et remplace la note de service n° 2000-021 du 10 février 2000 parue au B.O. n° 7 du 17 février 2000.

Pour le ministre de la jeunesse, de l'éducation nationale et de la recherche et par délégation, Le directeur de l'enseignement supérieur Jean-Marc MONTEIL

Les "groupements de spécialités de BTS pour l'évaluation ponctuelle en mathématiques session 2003" sont précisés par la note de service n° 2003-024 du 13 février 2003 parue au B.O. n° 8 du 20 février 2003, pages 297, 298 et 299.

FORMULAIRE DE MATHÉMATIQUES

BTS: GROUPEMENT A

Contrôle industriel et régulation automatique

Électronique

Électrotechnique

Génie optique

Informatique industrielle

Techniques physiques pour l'industrie et le laboratoire

Plusieurs résultats figurant dans ce formulaire ne sont pas au programme de TOUTES les spécialités de BTS appartenant à ce groupement.

1. RELATIONS FONCTIONNELLES

$$\ln(ab) = \ln a + \ln b, \text{ où } a > 0 \text{ et } b > 0$$

$$\exp(a+b) = \exp a \times \exp b$$

$$a^t = e^{t \ln a}, \text{ où } a > 0$$

$$t^{\alpha} = e^{\alpha \ln t}, \text{ où } t > 0$$

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

$$\sin(a+b) = \sin a \cos b + \cos a \sin b$$

$$\cos(2t) = 2\cos^2 t - 1 = 1 - 2\sin^2 t$$

$$\sin(2t) = 2\sin t \cos t$$

$$\sin p + \sin q = 2\sin \frac{p+q}{2}\cos \frac{p-q}{2}$$

$$\sin p - \sin q = 2\sin \frac{p-q}{2}\cos \frac{p+q}{2}$$

$$\cos p + \cos q = 2\cos \frac{p+q}{2}\sin \frac{p-q}{2}\sin \frac{p-q}{2}$$

$$\cos p - \cos q = -2\sin \frac{p+q}{2}\sin \frac{p-q}{2}\sin \frac{p-q}{2}$$

$$\cos a \cos b = \frac{1}{2} \left[\cos(a+b) + \cos(a-b) \right]$$

$$\sin a \sin b = \frac{1}{2} \left[\cos(a-b) - \cos(a+b) \right]$$

$$\sin a \cos b = \frac{1}{2} \left[\sin(a+b) + \sin(a-b) \right]$$

$$e^{it} = \cos t + i \sin t$$

$$\cos t = \frac{1}{2} \left(e^{it} + e^{-it} \right)$$

$$\sin t = \frac{1}{2i} \left(e^{it} - e^{-it} \right)$$

$$e^{at} = e^{at} \left(\cos(\beta t) + i \sin(\beta t) \right), \text{ où } a = \alpha + i\beta$$

2. CALCUL DIFFERENTIEL ET INTEGRAL

a) Limites usuelles

Comportement à l'infini

$$\begin{split} & \lim_{t \to +\infty} \ln t = +\infty \; ; \\ & \lim_{t \to +\infty} e^t = +\infty \; ; \\ & \lim_{t \to -\infty} e^t = 0 \; ; \\ & \operatorname{Si} \alpha > 0, \lim_{t \to +\infty} t^\alpha = +\infty \; ; \qquad \operatorname{si} \alpha < 0, \lim_{t \to +\infty} t^\alpha = 0 \end{split}$$

Croissances comparées à l'infini

Si
$$\alpha > 0$$
, $\lim_{t \to +\infty} \frac{e^t}{t^{\alpha}} = +\infty$
Si $\alpha > 0$, $\lim_{t \to +\infty} \frac{\ln t}{t^{\alpha}} = 0$

Comportement à l'origine

$$\begin{split} &\lim_{t\to 0} \ln t = -\infty \\ &\operatorname{Si} \; \alpha > 0, \; \lim_{t\to 0} t^\alpha = 0 \; ; \qquad &\operatorname{si} \; \alpha < 0, \; \lim_{t\to 0} t^\alpha = +\infty \\ &\operatorname{Si} \; \alpha > 0, \; \lim_{t\to 0} t^\alpha \ln t = 0 \; . \end{split}$$

b) Dérivées et primitives

Fonctions usuelles

f(t)	f'(t)	f(t)	f'(t)
ln <i>t</i>	$\frac{1}{t}$	Arc sin t	$\frac{1}{\sqrt{1-t^2}}$
e^t $t^{\alpha} \ (\alpha \in \mathbb{R})$	e^t $\alpha t^{\alpha-1}$	Arc tan t	$\frac{1}{1+t^2}$
$\sin t$	cos t	$e^{at} \ (a \in \mathbb{C})$	ae ^{at}
cos t	-sin <i>t</i>		
tan <i>t</i>	$\frac{1}{\cos^2 t} = 1 + \tan^2 t$		

Opérations

$$(u+v)' = u'+v'$$

$$(ku)' = ku'$$

$$(uv)' = u'v+uv'$$

$$(\frac{1}{u})' = -\frac{u'}{u^2}$$

$$(\frac{u}{v})' = \frac{u'v-uv'}{v^2}$$

$$(v \circ u)' = (v' \circ u)u'$$

$$(e^u)' = e^u u'$$

$$(\ln u)' = \frac{u'}{u}, u \text{ à valeurs strictement positives}$$

$$(u^{\alpha})' = \alpha u^{\alpha-1} u'$$

c) Calcul intégral

Valeur moyenne de f sur [a, b]: Intégration par parties:
$$\frac{1}{b-a} \int_a^b f(t) dt = \int_a^b u(t) v(t) dt = [u(t)v(t)]_a^b - \int_a^b u'(t) v(t) dt$$

d) Développements limités

$$e^{t} = 1 + \frac{t}{1!} + \frac{t^{2}}{2!} + \dots + \frac{t^{n}}{n!} + t^{n} \varepsilon(t)$$

$$\frac{1}{1+t} = 1 - t + t^{2} + \dots + (-1)^{n} t^{n} + t^{n} \varepsilon(t)$$

$$\ln(1+t) = t - \frac{t^{2}}{2} + \frac{t^{3}}{3} + \dots + (-1)^{n-1} \frac{t^{n}}{n} + t^{n} \varepsilon(t)$$

$$\ln(1+t) = t - \frac{t^{2}}{2!} + \frac{t^{3}}{3!} + \dots + (-1)^{n-1} \frac{t^{n}}{n} + t^{n} \varepsilon(t)$$

$$(1+t)^{\alpha} = 1 + \frac{\alpha}{1!} t + \frac{\alpha(\alpha-1)}{2!} t^{2} + \dots + \frac{\alpha(\alpha-1) \dots (\alpha-n+1)}{n!} t^{n} + t^{n} \varepsilon(t)$$

e) Equations différentielles

Équations	Solutions sur un intervalle I
a(t) x' + b(t) x = 0	$f(t) = ke^{-G(t)}$ où G est une primitive de $t \mapsto \frac{b(t)}{a(t)}$
ax'' + bx' + cx = 0	Si $\Delta > 0$, $f(t) = \lambda e^{r_1 t} + \mu e^{r_2 t}$ où r_1 et r_2 sont les racines de l'équation caractéristique
	Si $\Delta = 0$, $f(t) = (\lambda t + \mu)e^{rt}$ où r est la racine double de l'équation caractéristique
$ar^2 + br + c = 0$	Si $\Delta < 0$, $f(t) = [\lambda \cos(\beta t) + \mu \sin(\beta t)]e^{\alpha t}$ où $r_1 = \alpha + i\beta$ et $r_2 = \alpha - i\beta$ sont les racines
de discriminant Δ	complexes conjuguées de l'équation caractéristique.

3. SERIES DE FOURIER

f: fonction périodique de période T;

développement en série de Fourier ;

$$s(t) = a_0 + \sum_{n=1}^{+\infty} \left(a_n \cos(n\omega t) + b_n \sin(n\omega t) \right) = \sum_{-\infty}^{+\infty} c_k e^{\mathrm{i}\,k\,\omega t} \;, \quad (n\in\mathbb{N}^*,\ k\in\mathbb{Z}).$$

$$a_0 = \frac{1}{T} \int_a^{a+T} f(t) dt ; \qquad a_n = \frac{2}{T} \int_a^{a+T} f(t) \cos(n\omega t) dt ; \qquad b_n = \frac{2}{T} \int_a^{a+T} f(t) \sin(n\omega t) dt .$$

$$c_k = \frac{1}{T} \int_a^{a+T} f(t) \mathrm{e}^{-\mathrm{i}k\omega t} \mathrm{d}t \ (k \in \mathbb{Z}) \ ; \qquad \qquad c_0 = a_0 \ ; \qquad \qquad \frac{a_n - \mathrm{i}b_n}{2} = c_n \ ; \qquad \qquad \frac{a_n + \mathrm{i}b_n}{2} = c_{-n} \quad (n \in \mathbb{N}^*).$$

4. TRANSFORMATION DE LAPLACE

Fonctions usuelles

$$\begin{split} &\mathcal{L}(\mathcal{U}(t)) = \frac{1}{p} \quad ; \qquad &\mathcal{L}(t\mathcal{U}(t)) = \frac{1}{p^2} \quad ; \qquad &\mathcal{L}(t^n \mathcal{U}(t)) = \frac{n!}{p^{n+1}} \quad (n \in \mathbb{N}) \quad ; \\ &\mathcal{L}(e^{-at} \mathcal{U}(t)) = \frac{1}{p+a} \quad ; \quad &\mathcal{L}(\sin(\omega t) \mathcal{U}(t)) = \frac{\omega}{p^2 + \omega^2} \quad ; \qquad &\mathcal{L}(\cos(\omega t) \mathcal{U}(t)) = \frac{p}{p^2 + \omega^2} \end{split}$$

Propriétés

$$f(t) \mathcal{U}(t) \underbrace{\qquad \qquad \mathcal{G}}_{\mathcal{G}^{-1}} F(p)$$

$$f(\alpha t) \mathcal{U}(t) \qquad \alpha > 0 \qquad \qquad \frac{1}{\alpha} F\left(\frac{p}{\alpha}\right)$$

$$f(t-\tau) \mathcal{U}(t-\tau) \qquad F(p) e^{-\tau p}$$

$$f(t) e^{-\alpha t} \mathcal{U}(t) \qquad F(p+a)$$

$$f'(t) \mathcal{U}(t) \qquad pF(p) - f(0^{+})$$

$$f''(t) \mathcal{U}(t) \qquad p^{2}F(p) - p f(0^{+}) - f'(0^{+})$$

$$-t f(t) \mathcal{U}(t) \qquad F'(p)$$

$$\int_{0}^{t} f(u) \mathcal{U}(u) du \qquad \frac{F(p)}{p}$$

DE MATHÉMATIQUES

5. TRANSFORMATION EN Z

Signal causal $n \mapsto x(n)$ pour $n \in \mathbb{I}\mathbb{N}$	Transformée en Z $z\mapsto (Zx)(z)$
e(n) = 1	$(Ze)(z) = \frac{z}{z-1}$
$\begin{cases} d(0) = 1 \\ d(n) = 0 \text{ si } n \neq 0 \end{cases}$	(Zd)(z) = 1
r(n) = n	$(Zr)(z) = \frac{z}{(z-1)^2}$
$c(n) = n^2$	$(Zc)(z) = \frac{z(z+1)}{(z-1)^3}$
$f(n) = a^n, \ a \in \mathbb{R} - \{0\}$	$(Zf)(z) = \frac{z}{z - a}$
$y(n) = a^n x(n), \ a \in \mathbb{R} - \{0\}$	$(Zy)(z) = (Zx)\left(\frac{z}{a}\right)$
$y(n) = x(n - n_0), (n - n_0) \in \mathbb{N}$ ou $y(n) = x(n - n_0)e(n - n_0)$	$(Zy)(z) = z^{-n_0} (Zx)(z)$
y(n) = x(n+1)	(Zy)(z) = z[(Zx)(z) - x(0)]
y(n) = x(n+2)	$(Zy)(z) = z^{2} [(Zx)(z) - x(0) - x(1)z^{-1}]$
$y(n) = x(n + n_0), \ n_0 \in \mathbb{N}^*$	$(Zy)(z) = z^{n_0} \left[(Zx)(z) - x(0) - x(1)z^{-1} - x(2)z^{-2} \cdots - x(n_0 - 1)z^{-(n_0 - 1)} \right]$

6. PROBABILITES

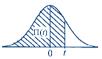
a) Loj binomiale
$$P(X=k) = C_n^k p^k q^{n-k}$$
 où $C_n^k = \frac{n!}{k!(n-k)!}$; $E(X) = np$; $\sigma(X) = \sqrt{npq}$

b) Loi de Poisson

$$P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}$$

$$E(X) = \lambda$$

$$V(X) = \lambda$$


\int_{k}^{λ}	0,2	0,3	0,4	0,5	0,6
0	0,8187	0,7408	0,6703	0,6065	0,5488
1	0,1637	0,2222	0,2681	0,3033	0,3293
2	0,0164	0,0333	0,0536	0,0758	0,0988
3	0,0011	0,0033	0,0072	0,0126	0,0198
4	0,0000	0,0003	0,0007	0,0016	0,0030
5		0,0000	0,0001	0,0002	0,0004
6			0,0000	0,0000	0,0000

k λ	1	1.5	2	3	4	5	6	7	8	9	10
0	0.368	0.223	0.135	0.050	0.018	0.007	0.002	0.001	0.000	0.000	0.000
1	0.368	0.335	0.271	0.149	0.073	0.034	0.015	0.006	0.003	0.001	0.000
2	0.184	0.251	0.271	0.224	0.147	0.084	0.045	0.022	0.011	0.005	0.002
3	0.061	0.126	0.180	0.224	0.195	0.140	0.089	0.052	0.029	0.015	0.008
4	0.015	0.047	0.090	0.168	0.195	0.176	0.134	0.091	0.057	0.034	0.019
5	0.003	0.014	0.036	0.101	0.156	0.176	0.161	0.128	0.092	0.061	0.038
6	0.001	0.004	0.012	0.050	0.104	0.146	0.161	0.149	0.122	0.091	0.063
7	0.000	0.001	0.003	0.022	0.060	0.104	0.138	0.149	0.140	0.117	0.090
8		0.000	0.001	0.008	0.030	0.065	0.103	0.130	0.140	0.132	0.113
9			0.000	0.003	0.013	0.036	0.069	0.101	0.124	0.132	0.125
10				0.001	0.005	0.018	0.041	0.071	0.099	0.119	0.125
11				0.000	0.002	0.008	0.023	0.045	0.072	0.097	0.114
12					0.001	0.003	0.011	0.026	0.048	0.073	0.095
13					0.000	0.001	0.005	0.014	0.030	0.050	0.073
14						0.000	0.002	0.007	0.017	0.032	0.052
15							0.001	0.003	0.009	0.019	0.035
16							0.000	0.001	0.005	0.011	0.022
17								0.001	0.002	0.006	0.013
18								0,000	0.001	0.003	0.007
19									0.000	0.001	0.004
20										0.001	0.002
21										0,000	0.001
22											0.000

La loi normale centrée réduite est caractérisée par la densité de probabilité : $f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$

EXTRAITS DE LA TABLE DE LA FONCTION INTEGRALE DE LA LOI NORMALE CENTREE, REDUITE $\mathcal{N}_{(0,1)}$

$$\Pi(t) = P(T \le t) = \int_{-\infty}^{t} f(x) dx$$

t 0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,0 0,500 0 0,504 0 0,508 0 0,512 0 0,515 9 0,523 9 0,523 9 0,531 9 0,535 9 0,1 0,539 8 0,543 8 0,547 8 0,551 7 0,555 7 0,559 6 0,563 6 0,567 5 0,573 3 0,2 0,579 3 0,583 2 0,587 1 0,594 8 0,598 7 0,602 6 0,666 4 0,614 1 0,3 0,617 9 0,621 7 0,625 5 0,629 3 0,633 1 0,636 8 0,644 3 0,648 0 0,651 7 0,4 0,655 4 0,659 1 0,662 8 0,666 4 0,670 0 0,673 6 0,671 2 0,680 8 0,684 4 0,687 9 0,5 0,691 5 0,695 0 0,698 5 0,701 9 0,705 4 0,708 8 0,712 3 0,751 7 0,719 0 0,722 4 0,758 0 0,761 1 0,764 2 0,767 3 0,779 2 0,732 3 0,805 1											
0.1 0,539 8 0,543 8 0,547 8 0,551 7 0,555 7 0,559 6 0,563 6 0,567 5 0,571 4 0,575 3 0.2 0,579 3 0,583 2 0,587 1 0,591 0 0,594 8 0,598 7 0,602 6 0,606 4 0,610 3 0,614 1 0.3 0,617 9 0,621 7 0,625 5 0,629 3 0,633 1 0,636 8 0,640 6 0,644 3 0,648 0 0,651 7 0.4 0,655 4 0,669 1 0,662 8 0,666 4 0,670 0 0,673 6 0,677 2 0,680 8 0,684 4 0,687 9 0.5 0,691 5 0,695 0 0,688 5 0,701 9 0,705 4 0,708 8 0,712 3 0,715 7 0,729 0 0,732 4 0,735 7 0,738 9 0,742 2 0,748 6 0,751 7 0,758 0 0,761 1 0,764 2 0,767 3 0,770 4 0,775 4 0,779 4 0,772 4 0,782 3 0,785 2 0,88 1 0,791 0 0,793 9 0,796 7 0,799 5 0,802 3 0,851 1 0,807 8 <td< th=""><th>t</th><th>0,00</th><th>0,01</th><th>0,02</th><th>0,03</th><th>0,04</th><th>0,05</th><th>0,06</th><th>0,07</th><th>0,08</th><th>0,09</th></td<>	t	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0.2 0,579 3 0,583 2 0,587 1 0,591 0 0,594 8 0,598 7 0,602 6 0,606 4 0,610 3 0,614 1 0.3 0,617 9 0,621 7 0,625 5 0,629 3 0,633 1 0,636 8 0,640 6 0,644 3 0,648 0 0,651 7 0.4 0,655 4 0,659 1 0,662 8 0,666 4 0,670 0 0,673 6 0,677 2 0,680 8 0,684 4 0,687 9 0.5 0,691 5 0,695 0 0,698 5 0,701 9 0,705 4 0,708 8 0,712 3 0,715 7 0,719 0 0,725 7 0,738 9 0,742 2 0,748 4 0,748 6 0,751 7 0,758 9 0,761 1 0,764 2 0,767 3 0,770 4 0,773 4 0,778 4 0,778 4 0,778 4 0,778 4 0,778 4 0,778 4 0,778 4 0,778 4 0,778 4 0,778 4 0,778 4 0,778 4 0,778 4 0,778 4 0,786 7 0,808 3 0,881 5 0,881 9 0,881 9 0,818 9 0,818 9 0,818 9 0,818 9 0,818 9 0,818 9	0,0	0,500 0	0,504 0	0,508 0	0,512 0	0,516 0	0,519 9	0,523 9	0,527 9	0,531 9	0,535 9
0,3 0,617 9 0,621 7 0,625 5 0,629 3 0,633 1 0,636 8 0,640 6 0,644 3 0,648 0 0,651 7 0,4 0,655 4 0,659 1 0,662 8 0,666 4 0,670 0 0,673 6 0,677 2 0,680 8 0,684 4 0,687 9 0,5 0,691 5 0,695 0 0,698 5 0,701 9 0,705 4 0,708 8 0,712 3 0,715 7 0,719 0 0,722 4 0,6 0,725 7 0,729 0 0,732 4 0,735 7 0,738 9 0,742 2 0,745 4 0,748 6 0,751 7 0,754 9 0,7 0,758 0 0,761 1 0,764 2 0,767 3 0,770 4 0,773 4 0,776 4 0,779 4 0,782 3 0,785 2 0,8 0,781 5 0,791 0 0,793 9 0,796 7 0,799 5 0,802 3 0,881 1 0,810 6 0,813 3 0,9 18 6 0,821 2 0,823 8 0,825 4 0,828 9 0,831 5 0,834 0 0,836 5 0,838 9 1,0 0,841 3 0,843 8	0,1	0,539 8	0,543 8	0,547 8	0,551 7	0,555 7	0,559 6	0,563 6	0,567 5	0,571 4	0,575 3
0,4 0,655 4 0,665 1 0,662 8 0,666 4 0,670 0 0,673 6 0,677 2 0,680 8 0,684 4 0,687 9 0,5 0,691 5 0,695 0 0,698 5 0,701 9 0,705 4 0,708 8 0,712 3 0,715 7 0,719 0 0,722 4 0,6 0,725 7 0,729 0 0,732 4 0,735 7 0,738 9 0,742 2 0,745 4 0,748 6 0,715 7 0,754 9 0,7 0,758 0 0,761 1 0,764 2 0,767 3 0,770 4 0,773 4 0,776 4 0,779 4 0,782 3 0,785 2 0,8 0,781 1 0,791 0 0,793 9 0,796 7 0,799 5 0,802 3 0,805 1 0,807 8 0,810 6 0,813 3 0,9 0,815 9 0,818 6 0,821 2 0,823 8 0,825 4 0,828 9 0,831 5 0,834 0 0,836 5 0,838 9 1,0 0,841 3 0,843 8 0,846 1 0,848 5 0,850 8 0,853 1 0,855 4 0,857 7 0,859 9 0,862 1	0,2	0,579 3	0,583 2	0,587 1	0,591 0	0,594 8	0,598 7	0,602 6	0,606 4	0,610 3	0,6141
0.5 0,691 5 0,695 0 0,698 5 0,701 9 0,705 4 0,708 8 0,712 3 0,715 7 0,719 0 0,722 4 0,6 0,725 7 0,729 0 0,732 4 0,735 7 0,738 9 0,742 2 0,745 4 0,748 6 0,751 7 0,754 9 0,7 0,758 0 0,761 1 0,764 2 0,767 3 0,770 4 0,773 4 0,776 4 0,779 4 0,782 3 0,785 2 0,8 0,781 1 0,791 0 0,793 9 0,796 7 0,799 5 0,802 3 0,805 1 0,807 8 0,810 6 0,813 3 0,9 0,815 9 0,818 6 0,821 2 0,823 8 0,825 4 0,828 9 0,831 5 0,834 0 0,836 5 0,838 9 1,0 0,841 3 0,866 5 0,868 6 0,870 8 0,877 9 0,877 0 0,879 0 0,881 0 0,883 0 1,2 0,884 9 0,886 8 0,888 8 0,890 7 0,892 5 0,894 4 0,896 2 0,898 0 0,889 7 0,901 5 1,3 <	0,3	0,617 9	0,621 7	0,625 5	0,629 3	0,633 1	0,636 8	0,640 6	0,644 3	0,648 0	0,651 7
0,6 0,725 7 0,729 0 0,732 4 0,735 7 0,738 9 0,742 2 0,745 4 0,748 6 0,751 7 0,754 9 0,7 0,758 0 0,761 1 0,764 2 0,767 3 0,770 4 0,773 4 0,776 4 0,779 4 0,782 3 0,785 2 0,8 0,788 1 0,791 0 0,793 9 0,796 7 0,799 5 0,802 3 0,805 1 0,807 8 0,810 6 0,813 3 0,9 0,815 9 0,818 6 0,821 2 0,823 8 0,825 4 0,828 9 0,831 5 0,834 0 0,836 5 0,838 8 1,0 0,841 3 0,866 5 0,868 6 0,870 8 0,872 9 0,877 0 0,879 0 0,881 0 0,883 0 1,2 0,884 9 0,886 9 0,888 8 0,890 7 0,892 5 0,894 4 0,896 2 0,898 0 0,899 7 0,901 5 1,3 0,903 2 0,904 9 0,906 6 0,908 2 0,909 9 0,911 5 0,913 1 0,914 7 0,916 2 0,917 7 1,4 <	0,4	0,655 4	0,659 1	0,662 8	0,666 4	0,670 0	0,673 6	0,677 2	0,680 8	0,684 4	0,687 9
0,7 0,758 0 0,761 1 0,764 2 0,767 3 0,770 4 0,773 4 0,776 4 0,779 4 0,779 4 0,779 4 0,782 3 0,785 2 0,8 0,788 1 0,791 0 0,793 9 0,796 7 0,799 5 0,802 3 0,805 1 0,807 8 0,810 6 0,813 3 0,9 0,815 9 0,818 6 0,821 2 0,823 8 0,825 4 0,828 9 0,831 5 0,834 0 0,836 5 0,838 9 1,0 0,841 3 0,846 1 0,848 5 0,850 8 0,853 1 0,857 7 0,859 9 0,862 1 1,1 0,864 3 0,866 5 0,868 6 0,870 8 0,872 9 0,877 0 0,879 0 0,881 0 0,883 0 1,2 0,884 9 0,886 9 0,888 8 0,890 7 0,892 5 0,894 4 0,896 2 0,898 0 0,899 7 0,901 5 1,3 0,903 2 0,904 9 0,906 6 0,908 2 0,909 9 0,911 5 0,913 1 0,914 7 0,916 2 0,917 7 1,4 <	0,5	0,691 5	0,695 0	0,698 5	0,701 9	0,705 4	0,708 8	0,712 3	0,715 7	0,719 0	0,722 4
0,8 0,788 1 0,791 0 0,793 9 0,796 7 0,799 5 0,802 3 0,805 1 0,807 8 0,810 6 0,813 3 0,9 0,815 9 0,818 6 0,821 2 0,823 8 0,825 4 0,828 9 0,831 5 0,834 0 0,836 5 0,838 9 1,0 0,841 3 0,843 8 0,846 1 0,848 5 0,850 8 0,853 1 0,857 7 0,859 9 0,862 1 1,1 0,864 3 0,866 5 0,868 6 0,870 8 0,872 9 0,877 0 0,879 0 0,881 0 0,883 0 1,2 0,884 9 0,886 8 0,890 7 0,892 5 0,894 4 0,896 2 0,898 0 0,899 7 0,901 5 1,3 0,903 2 0,904 9 0,906 6 0,908 2 0,909 9 0,911 5 0,913 1 0,914 7 0,916 2 0,917 7 1,4 0,919 2 0,920 7 0,922 2 0,923 6 0,925 1 0,926 5 0,927 9 0,929 2 0,930 6 0,931 9 1,5 0,933 2 0,934 5 <	0,6	0,725 7	0,729 0	0,732 4	0,735 7	0,738 9	0,742 2	0,745 4	0,748 6	0,751 7	0,754 9
0,9 0,815 9 0,818 6 0,821 2 0,823 8 0,825 4 0,828 9 0,831 5 0,834 0 0,836 5 0,838 9 1,0 0,841 3 0,843 8 0,846 1 0,848 5 0,850 8 0,853 1 0,857 7 0,859 9 0,862 1 1,1 0,864 3 0,866 5 0,868 6 0,870 8 0,872 9 0,874 9 0,877 0 0,879 0 0,881 0 0,883 0 1,2 0,884 9 0,886 8 0,890 7 0,892 5 0,894 4 0,896 2 0,898 0 0,899 7 0,901 5 1,3 0,903 2 0,904 9 0,906 6 0,908 2 0,909 9 0,911 5 0,913 1 0,914 7 0,916 2 0,917 7 1,4 0,919 2 0,920 7 0,922 2 0,923 6 0,925 1 0,926 5 0,927 9 0,929 2 0,930 6 0,931 9 1,5 0,933 2 0,934 5 0,935 7 0,937 0 0,938 2 0,951 5 0,951 5 0,952 5 0,953 5 0,954 5 1,7 0,956 4 <	0,7	0,758 0	0,761 1	0,764 2	0,767 3	0,770 4	0,773 4	0,776 4	0,779 4	0,782 3	0,785 2
1,0 0,841 3 0,843 8 0,846 1 0,848 5 0,850 8 0,853 1 0,855 4 0,857 7 0,859 9 0,862 1 1,1 0,864 3 0,866 5 0,868 6 0,870 8 0,872 9 0,874 9 0,877 0 0,879 0 0,881 0 0,883 0 1,2 0,884 9 0,886 8 0,890 7 0,892 5 0,894 4 0,896 2 0,898 0 0,899 7 0,901 5 1,3 0,903 2 0,904 9 0,906 6 0,908 2 0,909 9 0,911 5 0,913 1 0,914 7 0,916 2 0,917 7 1,4 0,919 2 0,920 7 0,922 2 0,923 6 0,925 1 0,926 5 0,927 9 0,929 2 0,930 6 0,931 9 1,5 0,933 2 0,934 5 0,935 7 0,937 0 0,938 2 0,939 4 0,940 6 0,941 8 0,942 9 0,944 1 1,6 0,945 2 0,946 3 0,947 4 0,948 4 0,949 5 0,951 5 0,952 5 0,953 5 0,954 5 1,7 0,954 4 <	0,8	0,788 1	0,791 0	0,793 9	0,796 7	0,799 5	0,802 3	0,805 1	0,807 8	0,810 6	0,813 3
1,1 0,864 3 0,866 5 0,868 6 0,870 8 0,872 9 0,874 9 0,877 0 0,879 0 0,881 0 0,883 0 1,2 0,884 9 0,886 9 0,888 8 0,890 7 0,892 5 0,894 4 0,896 2 0,898 0 0,899 7 0,901 5 1,3 0,903 2 0,904 9 0,906 6 0,908 2 0,909 9 0,911 5 0,913 1 0,914 7 0,916 2 0,917 7 1,4 0,919 2 0,920 7 0,922 2 0,923 6 0,925 1 0,926 5 0,927 9 0,929 2 0,930 6 0,931 9 1,5 0,933 2 0,934 5 0,935 7 0,937 0 0,938 2 0,939 4 0,946 6 0,941 8 0,942 9 0,944 1 1,6 0,945 2 0,946 3 0,947 4 0,948 4 0,949 5 0,950 5 0,951 5 0,952 5 0,953 5 0,953 5 0,953 1 0,956 6 0,965 6 0,966 4 0,967 1 0,967 8 0,968 6 0,969 3 0,969 9 0,976 6 0,973 3 0,973 8 0,	0,9	0,815 9	0,818 6	0,821 2	0,823 8	0,825 4	0,828 9	0,831 5	0,834 0	0,836 5	0,838 9
1,1 0,864 3 0,866 5 0,868 6 0,870 8 0,872 9 0,874 9 0,877 0 0,879 0 0,881 0 0,883 0 1,2 0,884 9 0,886 9 0,888 8 0,890 7 0,892 5 0,894 4 0,896 2 0,898 0 0,899 7 0,901 5 1,3 0,903 2 0,904 9 0,906 6 0,908 2 0,909 9 0,911 5 0,913 1 0,914 7 0,916 2 0,917 7 1,4 0,919 2 0,920 7 0,922 2 0,923 6 0,925 1 0,926 5 0,927 9 0,929 2 0,930 6 0,931 9 1,5 0,933 2 0,934 5 0,935 7 0,937 0 0,938 2 0,939 4 0,946 6 0,941 8 0,942 9 0,944 1 1,6 0,945 2 0,946 3 0,947 4 0,948 4 0,949 5 0,950 5 0,951 5 0,952 5 0,953 5 0,953 5 0,953 1 0,956 6 0,965 6 0,966 4 0,967 1 0,967 8 0,968 6 0,969 3 0,969 9 0,976 6 0,973 3 0,973 8 0,				:							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,0	0,841 3	0,843 8	0,846 1	0,848 5	0,850 8	0,853 1	0,855 4	0,857 7	0,859 9	0,862 1
1,3 0,903 2 0,904 9 0,906 6 0,908 2 0,909 9 0,911 5 0,913 1 0,914 7 0,916 2 0,917 7 1,4 0,919 2 0,920 7 0,922 2 0,923 6 0,925 1 0,926 5 0,927 9 0,929 2 0,930 6 0,931 9 1,5 0,933 2 0,934 5 0,935 7 0,937 0 0,938 2 0,939 4 0,940 6 0,941 8 0,942 9 0,944 1 1,6 0,945 2 0,946 3 0,947 4 0,948 4 0,949 5 0,950 5 0,951 5 0,952 5 0,953 5 0,954 5 1,7 0,955 4 0,957 3 0,958 2 0,959 1 0,959 9 0,960 8 0,961 6 0,962 5 0,963 3 1,8 0,964 1 0,965 6 0,966 4 0,967 1 0,967 8 0,968 6 0,969 9 0,970 6 1,9 0,971 3 0,971 9 0,972 6 0,973 2 0,973 8 0,974 4 0,975 0 0,975 6 0,976 1 0,976 7 2,0 0,977 2 0,977 9 <	1,1	0,864 3	0,866 5	0,868 6	0,870 8	0,872 9	0,874 9	0,877 0	0,879 0	0,881 0	0,883 0
1,4 0,919 2 0,920 7 0,922 2 0,923 6 0,925 1 0,926 5 0,927 9 0,922 2 0,936 6 0,931 9 1,5 0,933 2 0,934 5 0,935 7 0,937 0 0,938 2 0,939 4 0,946 6 0,941 8 0,942 9 0,944 1 1,6 0,945 2 0,946 3 0,947 4 0,948 4 0,949 5 0,950 5 0,951 5 0,952 5 0,953 5 0,954 5 1,7 0,955 4 0,957 3 0,958 2 0,959 1 0,959 9 0,960 8 0,961 6 0,962 5 0,963 3 1,8 0,964 1 0,965 6 0,966 4 0,967 1 0,967 8 0,968 6 0,969 3 0,969 9 0,970 6 1,9 0,971 3 0,971 9 0,972 6 0,973 2 0,973 8 0,974 4 0,975 0 0,975 6 0,976 1 0,976 7 2,0 0,977 2 0,977 9 0,973 3 0,978 8 0,979 3 0,979 8 0,980 3 0,980 8 0,981 2 0,981 7 2,1 0,982 1 <	1,2	0,884 9	0,886 9	0,888 8	0,890 7	0,892 5	0,894 4	0,896 2	0,898 0	0,899 7	0,901 5
1,5 0,933 2 0,934 5 0,935 7 0,937 0 0,938 2 0,939 4 0,940 6 0,941 8 0,942 9 0,944 1 1,6 0,945 2 0,946 3 0,947 4 0,948 4 0,949 5 0,950 5 0,951 5 0,952 5 0,953 5 0,954 5 1,7 0,955 4 0,957 3 0,958 2 0,959 1 0,959 9 0,960 8 0,961 6 0,962 5 0,963 3 1,8 0,964 1 0,965 6 0,966 4 0,967 1 0,967 8 0,968 6 0,969 3 0,969 9 0,970 6 1,9 0,971 3 0,971 9 0,972 6 0,973 2 0,973 8 0,974 4 0,975 0 0,975 6 0,976 1 0,976 7 2,0 0,977 2 0,977 9 0,978 8 0,979 3 0,979 8 0,980 3 0,980 8 0,981 2 0,981 7 2,1 0,982 1 0,982 6 0,983 0 0,983 4 0,983 8 0,984 2 0,984 6 0,985 0 0,985 7 2,2 0,986 1 0,986 8 0,987 1 <	1,3	0,903 2	0,904 9	0,906 6	0,908 2	0,909 9	0,911 5	0,913 1	0,914 7	0,916 2	0,9177
1,6 0,945 2 0,946 3 0,947 4 0,948 4 0,949 5 0,950 5 0,951 5 0,952 5 0,953 5 0,953 5 0,953 5 0,953 5 0,953 5 0,953 5 0,953 5 0,953 5 0,953 5 0,953 5 0,953 5 0,953 3 0,968 6 0,969 8 0,961 6 0,962 5 0,963 3 1,8 0,964 1 0,964 9 0,965 6 0,966 4 0,967 1 0,967 8 0,968 6 0,969 3 0,969 9 0,970 6 1,9 0,971 3 0,971 9 0,972 6 0,973 2 0,973 8 0,974 4 0,975 0 0,975 6 0,976 1 0,976 7 2,0 0,977 2 0,973 3 0,978 8 0,979 3 0,979 8 0,980 3 0,980 8 0,981 2 0,981 7 2,1 0,982 1 0,982 6 0,983 0 0,983 4 0,983 8 0,984 2 0,984 6 0,985 0 0,985 7 2,2 0,986 1 0,986 8 0,987 1 0,987 5 0,987 8 0,988 1 0,988 7 0,989 8 0,990 6 0,990 9	1,4	0,919 2	0,920 7	0,922 2	0,923 6	0,925 1	0,926 5	0,927 9	0,929 2	0,930 6	0,931 9
1,7 0,955 4 0,956 4 0,957 3 0,958 2 0,959 1 0,959 9 0,960 8 0,961 6 0,962 5 0,963 3 1,8 0,964 1 0,964 9 0,965 6 0,966 4 0,967 1 0,967 8 0,968 6 0,969 3 0,969 9 0,970 6 1,9 0,971 3 0,971 9 0,972 6 0,973 2 0,973 8 0,974 4 0,975 0 0,975 6 0,976 1 0,976 7 2,0 0,977 2 0,977 9 0,978 3 0,978 8 0,979 3 0,979 8 0,980 3 0,980 8 0,981 2 0,981 7 2,1 0,982 1 0,982 6 0,983 0 0,983 4 0,983 8 0,984 2 0,984 6 0,985 0 0,985 4 0,985 7 2,2 0,986 1 0,986 8 0,987 1 0,987 5 0,987 8 0,988 1 0,988 1 0,988 7 0,989 9 2,3 0,989 3 0,989 8 0,990 1 0,990 4 0,990 6 0,990 9 0,991 1 0,991 3 0,993 4 0,993 8 2,5 <	1,5	0,933 2	0,934 5	0,935 7	0,937 0	0,938 2	0,939 4	0,940 6	0,941 8	0,942 9	0,944 1
1,8 0,964 1 0,964 9 0,965 6 0,966 4 0,967 1 0,967 8 0,968 6 0,969 3 0,969 9 0,970 6 1,9 0,971 3 0,971 9 0,972 6 0,973 2 0,973 8 0,974 4 0,975 0 0,975 6 0,976 1 0,976 7 2,0 0,977 2 0,977 9 0,978 3 0,978 8 0,979 3 0,979 8 0,980 3 0,980 8 0,981 2 0,981 7 2,1 0,982 1 0,982 6 0,983 0 0,983 4 0,983 8 0,984 2 0,984 6 0,985 0 0,985 4 0,985 7 2,2 0,986 1 0,986 8 0,987 1 0,987 5 0,987 8 0,988 1 0,988 7 0,989 9 2,3 0,989 3 0,989 8 0,990 1 0,990 4 0,990 6 0,990 9 0,991 1 0,991 3 0,991 6 2,4 0,991 8 0,992 0 0,992 2 0,992 5 0,992 7 0,992 9 0,993 1 0,993 4 0,995 5 2,5 0,993 8 0,994 1 0,994 3 <	1,6	0,945 2	0,946 3	0,947 4	0,948 4	0,949 5	0,950 5	0,951 5	0,952 5	0,953 5	0,954 5
1,9 0,971 3 0,971 9 0,972 6 0,973 2 0,973 8 0,974 4 0,975 0 0,975 6 0,976 1 0,976 7 2,0 0,977 2 0,977 9 0,978 3 0,978 8 0,979 3 0,979 8 0,980 3 0,980 8 0,981 2 0,981 7 2,1 0,982 1 0,982 6 0,983 0 0,983 4 0,983 8 0,984 2 0,984 6 0,985 0 0,985 4 0,985 7 2,2 0,986 1 0,986 8 0,987 1 0,987 5 0,987 8 0,988 1 0,988 4 0,988 7 0,989 0 2,3 0,989 3 0,989 8 0,990 1 0,990 4 0,990 6 0,990 9 0,991 1 0,991 3 0,991 3 0,993 4 0,993 3 0,993 4 0,993 3 0,994 4 0,994 9 0,993 1 0,993 4 0,993 6 0,994 9 0,991 1 0,993 6 0,995 3 0,994 0 0,994 1 0,994 3 0,994 5 0,994 8 0,994 9 0,995 1 0,995 2 2,6 0,995 3 0,995 5 0,995 7 0,995 9	1,7	0,955 4	0,956 4	0,957 3	0,958 2	0,959 1	0,959 9	0,960 8	0,961 6	0,962 5	0,963 3
2,0 0,977 2 0,977 9 0,978 3 0,978 8 0,979 3 0,979 8 0,980 3 0,980 8 0,981 2 0,981 7 2,1 0,982 1 0,982 6 0,983 0 0,983 4 0,983 8 0,984 2 0,984 6 0,985 0 0,985 4 0,985 7 2,2 0,986 1 0,986 8 0,987 1 0,987 5 0,987 8 0,988 1 0,988 4 0,988 7 0,989 0 2,3 0,989 3 0,989 6 0,989 8 0,990 1 0,990 4 0,990 6 0,990 9 0,991 1 0,991 3 0,991 3 0,993 4 0,993 6 2,4 0,991 8 0,994 0 0,994 1 0,994 3 0,994 5 0,994 8 0,994 9 0,991 1 0,995 2 2,6 0,995 3 0,995 5 0,995 7 0,995 9 0,996 0 0,996 1 0,996 2 0,996 3 0,996 4 2,7 0,996 5 0,996 6 0,996 7 0,996 8 0,997 7 0,997 9 0,997 9 0,997 9 0,998 0 0,998 0 0,998 1	1,8	0,964 1	0,964 9	0,965 6	0,966 4	0,967 1	0,9678	0,968 6	0,969 3	0,969 9	0,970 6
2,1 0,982 1 0,982 6 0,983 0 0,983 4 0,983 8 0,984 2 0,984 6 0,985 0 0,985 4 0,985 7 2,2 0,986 1 0,986 4 0,986 8 0,987 1 0,987 5 0,987 8 0,988 1 0,988 4 0,988 7 0,989 0 2,3 0,989 3 0,989 6 0,989 8 0,990 1 0,990 4 0,990 6 0,990 9 0,991 1 0,991 3 0,991 6 2,4 0,991 8 0,992 0 0,992 2 0,992 5 0,992 7 0,992 9 0,993 1 0,993 2 0,993 6 2,5 0,993 8 0,994 0 0,994 1 0,994 3 0,994 5 0,994 8 0,994 9 0,995 1 0,995 2 2,6 0,995 3 0,995 5 0,995 6 0,995 7 0,995 9 0,996 0 0,996 1 0,996 2 0,996 3 0,996 4 2,7 0,996 5 0,996 6 0,996 7 0,996 8 0,996 9 0,997 0 0,997 1 0,997 2 0,998 0 0,998 0 0,998 0 0,998 0 0,998 0	1,9	0,971 3	0,971 9	0,972 6	0,973 2	0,973 8	0,974 4	0,975 0	0,975 6	0,976 1	0,9767
2,1 0,982 1 0,982 6 0,983 0 0,983 4 0,983 8 0,984 2 0,984 6 0,985 0 0,985 4 0,985 7 2,2 0,986 1 0,986 4 0,986 8 0,987 1 0,987 5 0,987 8 0,988 1 0,988 4 0,988 7 0,989 0 2,3 0,989 3 0,989 6 0,989 8 0,990 1 0,990 4 0,990 6 0,990 9 0,991 1 0,991 3 0,991 6 2,4 0,991 8 0,992 0 0,992 2 0,992 5 0,992 7 0,992 9 0,993 1 0,993 2 0,993 6 2,5 0,993 8 0,994 0 0,994 1 0,994 3 0,994 5 0,994 8 0,994 9 0,995 1 0,995 2 2,6 0,995 3 0,995 5 0,995 6 0,995 7 0,995 9 0,996 0 0,996 1 0,996 2 0,996 3 0,996 4 2,7 0,996 5 0,996 6 0,996 7 0,996 8 0,996 9 0,997 0 0,997 1 0,997 2 0,998 0 0,998 0 0,998 0 0,998 0 0,998 0											
2,2 0,986 1 0,986 4 0,986 8 0,987 1 0,987 5 0,987 8 0,988 1 0,988 4 0,988 7 0,989 0 2,3 0,989 3 0,989 6 0,989 8 0,990 1 0,990 4 0,990 6 0,990 9 0,991 1 0,991 3 0,991 6 2,4 0,991 8 0,992 0 0,992 2 0,992 5 0,992 7 0,992 9 0,993 1 0,993 2 0,993 6 2,5 0,993 8 0,994 0 0,994 1 0,994 3 0,994 5 0,994 6 0,994 8 0,994 9 0,995 1 0,995 2 2,6 0,995 3 0,995 5 0,995 6 0,995 7 0,995 9 0,996 0 0,996 1 0,996 2 0,996 3 0,996 4 2,7 0,996 5 0,996 6 0,996 7 0,996 8 0,996 9 0,997 1 0,997 2 0,997 3 0,997 3 0,997 3 0,998 0 0,998 1 2,8 0,997 4 0,997 5 0,997 6 0,997 7 0,997 7 0,997 8 0,997 9 0,997 9 0,998 0 0,998 0	2,0	0,977 2	0,977 9	0,978 3	0,978 8	0,979 3	0,979 8	0,980 3	0,980 8	0,981 2	0,981 7
2,3 0,989 3 0,989 6 0,989 8 0,990 1 0,990 4 0,990 6 0,990 9 0,991 1 0,991 3 0,991 6 2,4 0,991 8 0,992 0 0,992 2 0,992 5 0,992 7 0,992 9 0,993 1 0,993 2 0,993 4 0,993 6 2,5 0,993 8 0,994 0 0,994 1 0,994 3 0,994 5 0,994 6 0,994 8 0,994 9 0,995 1 0,995 2 2,6 0,995 3 0,995 5 0,995 6 0,995 7 0,995 9 0,996 0 0,996 1 0,996 2 0,996 3 0,996 4 2,7 0,996 5 0,996 6 0,996 7 0,996 8 0,996 9 0,997 0 0,997 1 0,997 2 0,997 3 0,998 0 0,998 1 2,8 0,997 4 0,997 5 0,997 6 0,997 7 0,997 7 0,997 8 0,997 9 0,997 9 0,998 0 0,998 1	2,1	0,982 1	0,982 6	0,983 0	0,983 4	0,983 8	0,984 2	0,984 6	0,985 0	0,985 4	0,985 7
2,4 0,991 8 0,992 0 0,992 2 0,992 5 0,992 7 0,992 9 0,993 1 0,993 2 0,993 4 0,993 6 2,5 0,993 8 0,994 0 0,994 1 0,994 3 0,994 5 0,994 6 0,994 8 0,994 9 0,995 1 0,995 2 2,6 0,995 3 0,995 5 0,995 6 0,995 7 0,995 9 0,996 0 0,996 1 0,996 2 0,996 3 0,996 4 2,7 0,996 5 0,996 6 0,996 7 0,996 8 0,996 9 0,997 0 0,997 1 0,997 2 0,997 3 0,998 0 0,998 1 2,8 0,997 4 0,997 5 0,997 6 0,997 7 0,997 7 0,997 8 0,997 9 0,997 9 0,998 0 0,998 1	2,2	0,986 1	0,986 4	0,986 8	0,987 1	0,987 5	0,9878	0,988 1	0,988 4	0,988 7	0,989 0
2,5 0,993 8 0,994 0 0,994 1 0,994 3 0,994 5 0,994 6 0,994 8 0,994 9 0,995 1 0,995 2 2,6 0,995 3 0,995 5 0,995 6 0,995 7 0,995 9 0,996 0 0,996 1 0,996 2 0,996 3 0,996 4 2,7 0,996 5 0,996 6 0,996 7 0,996 8 0,996 9 0,997 0 0,997 1 0,997 2 0,997 3 0,997 3 0,998 1 2,8 0,997 4 0,997 5 0,997 6 0,997 7 0,997 7 0,997 8 0,997 9 0,997 9 0,998 0 0,998 1	2,3	0,989 3	0,989 6	0,989 8	0,990 1	0,990 4	0,990 6	0,990 9	0,991 1	0,991 3	0,991 6
2,6 0,995 3 0,995 5 0,995 6 0,995 7 0,995 9 0,996 0 0,996 1 0,996 2 0,996 3 0,996 4 2,7 0,996 5 0,996 6 0,996 7 0,996 8 0,996 9 0,997 0 0,997 1 0,997 2 0,997 3 0,997 4 2,8 0,997 4 0,997 5 0,997 6 0,997 7 0,997 7 0,997 8 0,997 9 0,997 9 0,998 0 0,998 1	2,4	0,991 8	0,992 0	0,992 2	0,992 5	0,992 7	0,992 9	0,993 1	0,993 2	0,993 4	0,993 6
2,7 0,996 5 0,996 6 0,996 7 0,996 8 0,996 9 0,997 0 0,997 1 0,997 2 0,997 3 0,997 4 2,8 0,997 4 0,997 5 0,997 6 0,997 7 0,997 7 0,997 8 0,997 9 0,997 9 0,998 0 0,998 1	2,5	0,993 8	0,994 0	0,994 1	0,994 3	0,994 5	0,994 6	0,994 8	0,994 9	0,995 1	0,995 2
2,8 0,997 4 0,997 5 0,997 6 0,997 7 0,997 7 0,997 8 0,997 9 0,997 9 0,998 0 0,998 1	2,6	0,995 3	0,995 5	0,995 6	0,995 7	0,995 9	0,996 0	0,996 1	0,996 2	0,996 3	0,996 4
	2,7	0,996 5	0,996 6	0,996 7	0,9968	0,996 9	0,997 0	0,997 1	0,997 2	0,9973	0,997 4
2,9 0,998 1 0,998 2 0,998 2 0,998 3 0,998 4 0,998 4 0,998 5 0,998 5 0,998 6 0,998 6	2,8	0,997 4	0,997 5	0,997 6	0,997 7	0,997 7	0,9978	0,997 9	0,997 9	0,998 0	0,998 1
	2,9	0,998 1	0,998 2	0,998 2	0,998 3	0,998 4	0,998 4	0,998 5	0,998 5	0,998 6	0,998 6

TABLE POUR LES GRANDES VALEURS DE t

t	3,0	3,1	3,2	3,3	3,4	3,5	3,6	3,8	4,0	4,5
$\Pi(t)$	0,998 65	0,999 04	0,999 31	0,999 52	0,999 66	0,999 76	0,999 841	0,999 928	0,999 968	0,999 997

Nota: $\Pi(-t)=1-\Pi(t)$

FORMULAIRE DE MATHEMATIQUES

BTS: GROUPEMENT B

Aménagement finition
Assistance technique d'ingénieur
Bâtiment
Conception et réalisation de carrosseries
Construction navale
Constructions métalliques
Domotique

Enveloppe du bâtiment : façades-étanchéité Études et économie de la construction Fluides-énergies-environnements Géologie appliquée

Industries graphiques : communication graphique
Industries graphiques : productique graphique
Maintenance et après-vente automobile
Maintenance et après-vente des engins de travaux publics
et de manutention

Maintenance et exploitation des matériels aéronautiques
Maintenance industrielle
Mécanique et automatismes industriels
Microtechniques
Moteurs à combustion interne

Productique mécanique Traitement des matériaux Travaux publics Plusieurs résultats figurant dans ce formulaire ne sont pas au programme de TOUTES les spécialités de BTS appartenant à ce groupement.

1. RELATIONS FONCTIONNELLES

$$\ln(ab) = \ln a + \ln b, \text{ où } a > 0 \text{ et } b > 0$$

$$\exp(a+b) = \exp a \times \exp b$$

$$a^t = e^{t \ln a}$$
, où $a > 0$

$$t^{\alpha} = e^{\alpha \ln t}$$
, où $t > 0$

$$cos(a+b) = cos a cos b - sin a sin b$$

$$\sin(a+b) = \sin a \cos b + \cos a \sin b$$

$$cos(2t) = 2cos^2 t - 1 = 1 - 2sin^2 t$$

$$\sin(2t) = 2\sin t \cos t$$

$$\sin p + \sin q = 2\sin \frac{p+q}{2}\cos \frac{p-q}{2}$$

$$\sin p - \sin q = 2\sin \frac{p-q}{2}\cos \frac{p+q}{2}$$

$$\cos p + \cos q = 2\cos\frac{p+q}{2}\cos\frac{p-q}{2}$$

$$\cos p - \cos q = -2\sin\frac{p+q}{2}\sin\frac{p-q}{2}$$

$$\cos a \cos b = \frac{1}{2} \left[\cos (a+b) + \cos (a-b) \right]$$

$$\sin a \sin b = \frac{1}{2} \left[\cos (a-b) - \cos (a+b) \right]$$

$$\sin a \cos b = \frac{1}{2} \left[\sin (a+b) + \sin (a-b) \right]$$

$$e^{it} = \cos t + i \sin t$$

$$\cos t = \frac{1}{2} \left(e^{it} + e^{-it} \right)$$

$$\sin t = \frac{1}{2i} \left(e^{it} - e^{-it} \right)$$

$$e^{at} = e^{\alpha t} (\cos(\beta t) + i\sin(\beta t)), \text{ où } a = \alpha + i\beta$$

2. CALCUL DIFFERENTIEL ET INTEGRAL

a) Limites usuelles

Comportement à l'infini

$$\lim \ln t = +\infty ;$$

$$\lim_{t\to\infty} e^t = +\infty ;$$

$$\lim_{t\to\infty} e^t = 0 ;$$

Si
$$\alpha > 0$$
, $\lim_{t \to +\infty} t^{\alpha} = +\infty$; si $\alpha < 0$, $\lim_{t \to +\infty} t^{\alpha} = 0$

Croissances comparées à l'infini

Si
$$\alpha > 0$$
, $\lim_{t \to +\infty} \frac{e^t}{t^{\alpha}} = +\infty$

Si
$$\alpha > 0$$
, $\lim_{t \to +\infty} \frac{\ln t}{t^{\alpha}} = 0$

Comportement à l'origine

$$\lim_{t\to 0} \ln t = -\infty$$

Si
$$\alpha > 0$$
, $\lim_{t \to 0} t^{\alpha} = 0$; si $\alpha < 0$, $\lim_{t \to 0} t^{\alpha} = +\infty$

Si
$$\alpha > 0$$
, $\lim_{t \to 0} t^{\alpha} \ln t = 0$.

2003

b) Dérivées et primitives

Fonctions usuelles

f(t)	f'(t)	f(t)	f'(t)
ln t	$\frac{1}{t}$	Arc sin t	$\frac{1}{\sqrt{1-t^2}}$
e^t $t^{\alpha} \ (\alpha \in \mathbb{R})$	e^t $\alpha t^{\alpha-1}$	Arc tan t	$\frac{1}{1+t^2}$
sin t	cos t	$e^{at} \ (a \in \mathbb{C})$	ae ^{at}
cos t	$-\sin t$		
tan t	$\frac{1}{\cos^2 t} = 1 + \tan^2 t$		

Opérations

$$(u+v)' = u'+v'$$

$$(ku)' = ku'$$

$$(uv)' = u'v+uv'$$

$$(\frac{1}{u})' = -\frac{u'}{u^2}$$

$$(uv)' = u'v-uv'$$

$$(uv)' = (v' \circ u)u'$$

$$(e^u)' = e^u u'$$

$$(uv)' = (u')' = u''$$

$$(uv)' = u''$$

c) Calcul intégral

Valeur moyenne de f sur
$$[a, b]$$
:
$$\frac{1}{b-a} \int_a^b f(t) dt$$
Intégration par parties:
$$\int_a^b u(t) v'(t) dt = [u(t)v(t)]_a^b - \int_a^b u'(t) v(t) dt$$

d) Développements limités

$$\begin{aligned} \mathbf{e}^t &= 1 + \frac{t}{1!} + \frac{t^2}{2!} + \dots + \frac{t^n}{n!} + t^n \, \mathbf{\epsilon} \, (t) \\ &\frac{1}{1+t} = 1 - t + t^2 + \dots + (-1)^n t^n + t^n \, \mathbf{\epsilon} \, (t) \\ &\ln(1+t) = t - \frac{t^2}{2} + \frac{t^3}{3} + \dots + (-1)^{n-1} \frac{t^n}{n} + t^n \, \mathbf{\epsilon} \, (t) \end{aligned} \\ &\sin t = \frac{t}{1!} - \frac{t^3}{3!} + \frac{t^5}{5!} + \dots + (-1)^p \frac{t^{2p+1}}{(2p+1)!} + t^{2p+1} \, \mathbf{\epsilon} \, (t) \\ &\cos t = 1 - \frac{t^2}{2!} + \frac{t^4}{4!} + \dots + (-1)^p \frac{t^{2p}}{(2p)!} + t^{2p} \, \mathbf{\epsilon} \, (t) \\ &(1+t)^\alpha = 1 + \frac{\alpha(\alpha-1)}{2!} t^2 + \dots + \frac{\alpha(\alpha-1) \cdot \dots (\alpha-n+1)}{n!} t^n + t^n \, \mathbf{\epsilon} \, (t) \end{aligned}$$

e) Equations différentielles

Équations	Solutions sur un intervalle I
a(t) x' + b(t) x = 0	$f(t) = ke^{-G(t)}$ où G est une primitive de $t \mapsto \frac{b(t)}{a(t)}$
ax'' + bx' + cx = 0	Si $\Delta > 0$, $f(t) = \lambda e^{r_1 t} + \mu e^{r_2 t}$ où r_1 et r_2 sont les racines de l'équation caractéristique
	Si $\Delta = 0$, $f(t) = (\lambda t + \mu)e^{rt}$ où r est la racine double de l'équation caractéristique
	Si $\Delta < 0$, $f(t) = [\lambda \cos(\beta t) + \mu \sin(\beta t)]e^{\alpha t}$ où $r_1 = \alpha + i\beta$ et $r_2 = \alpha - i\beta$ sont les racines
de discriminant Δ	complexes conjuguées de l'équation caractéristique.

FORMULAIRES

DE MATHÉMATIQUES

BTS

3. PROBABILITES

a) Loi binomiale
$$P(X = k) = C_n^k p^k q^{n-k}$$
 où $C_n^k = \frac{n!}{k!(n-k)!}$; $E(X) = np$; $\sigma(X) = \sqrt{npq}$

b) Loi de Poisson

$$P(X=k) = \frac{e^{-\lambda} \lambda^k}{k!}$$

$$E(X) = \lambda$$

$$V(X) = \lambda$$

k l	0,2	0,3	0,4	0,5	0,6
0	0,8187	0,7408	0,6703	0,6065	0,5488
1	0,1637	0,2222	0,2681	0,3033	0,3293
2	0,0164	0,0333	0,0536	0,0758	0,0988
3	0,0011	0,0033	0,0072	0,0126	0,0198
4	0,0000	0,0003	0,0007	0,0016	0,0030
5		0,0000	0,0001	0,0002	0,0004
6			0,0000	0,0000	0,0000

k	1	1.5	2	3	4	5	6	7	8	9	10
0	0.368	0.223	0.135	0.050	0.018	0.007	0.002	0.001	0.000	0.000	0.000
1	0.368	0.335	0.271	0.149	0.073	0.034	0.015	0.006	0.003	0.001	0.000
2	0.184	0.251	0.271	0.224	0.147	0.084	0.045	0.022	0.011	0.005	0.002
3	0.061	0.126	0.180	0.224	0.195	0.140	0.089	0.052	0.029	0.015	0.008
4	0.015	0.047	0.090	0.168	0.195	0.176	0.134	0.091	0.057	0.034	0.019
5	0.003	0.014	0.036	0.101	0.156	0.176	0.161	0.128	0.092	0.061	0.038
6	0.001	0.004	0.012	0.050	0.104	0.146	0.161	0.149	0.122	0.091	0.063
7	0.000	0.001	0.003	0.022	0.060	0.104	0.138	0.149	0.140	0.117	0.090
8		0.000	0.001	0.008	0.030	0.065	0.103	0.130	0.140	0.132	0.113
9			0.000	0.003	0.013	0.036	0.069	0.101	0.124	0.132	0.125
10				0.001	0.005	0.018	0.041	0.071	0.099	0.119	0.125
11				0.000	0.002	0.008	0.023	0.045	0.072	0.097	0.114
12					0.001	0.003	0.011	0.026	0.048	0.073	0.095
13					0.000	0.001	0.005	0.014	0.030	0.050	0.073
14						0.000	0.002	0.067	0.017	0.032	0.052
15							0.001	0.003	0.009	0.019	0.035
16							0.000	0.001	0.005	0.011	0.022
17								0.001	0.002	0.006	0.013
18								0,000	0.001	0.003	0.007
19									0.000	0.001	0.004
20										0.001	0.002
21										0,000	0.001
22											0.000

c) Loi exponentielle

Fonction de fiabilité:
$$R(t) = e^{-\lambda t}$$
 $E(X) = \frac{1}{\lambda}$ (M.T.B.F.) $\sigma(X) = \frac{1}{\lambda}$

d) Loi normale

La loi normale centrée réduite est caractérisée par la densité de probabilité : $f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$

EXTRAITS DE LA TABLE DE LA FONCTION INTEGRALE DE LA LOI NORMALE CENTREE, REDUITE $\mathcal{N}(0,1)$

$$\Pi(t) = P(T \le t) = \int_{-\infty}^{t} f(x) dx$$

			0 1								
t	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09	
0,0	0,500 0	0,504 0	0,508 0	0,512 0	0,516 0	0,519 9	0,523 9	0,527 9	0,531 9	0,535 9	
0,1	0,539 8	0,543 8	0,547 8	0,5517	0,555 7	0,559 6	0,563 6	0,567 5	0,571 4	0,575 3	
0,2	0,579 3	0,583 2	0,587 1	0,591 0	0,594 8	0,598 7	0,602 6	0,606 4	0,610 3	0,614 1	
0,3	0,617 9	0,621 7	0,625 5	0,6293	0,633 1	0,6368	0,640 6	0,6443	0,648 0	0,651 7	
0,4	0,655 4	0,659 1	0,662 8	0,6664	0,670 0	0,673 6	0,677 2	0,680 8	0,684 4	0,687 9	
0,5	0,691 5	0,695 θ	0,698 5	0,7019	0,705 4	0,708 8	0,712 3	0,715 7	0,719 0	0,722 4	
0,6	0,725 7	0,729 0	0,732 4	0,735 7	0,738 9	0,742 2	0,745 4	0,748 6	0,751 7	0,754 9	
0,7	0,758 0	0,761 1	0,764 2	0,7673	0,770 4	0,773 4	0,776 4	0,779 4	0,782 3	0,785 2	
0,8	0,788 1	0,791 0	0,793 9	0,7967	0,799 5	0,802 3	0,805 1	0,8078	0,810 6	0,813 3	
0,9	0,8159	0,818 6	0,821 2	0,823 8	0,825 4	0,828 9	0,831 5	0,834 0	0,836 5	0,838 9	
1,0	0,841 3	0,843 8	0,846 1	0,848 5	0,850 8	0,853 1	0,855 4	0,857 7	0,859 9	0,862 1	
1,1	0,864 3	0,866 5	0,868 6	0,8708	0,872 9	0,874 9	0,877 0	0,879 0	0,881 0	0,883 0	
1,2	0,884 9	0,8869	0,888 8	0,8907	0,892 5	0,894 4	0,896 2	0,898 0	0,899 7	0,901 5	
1,3	0,903 2	0,904 9	0,906 6	0,908 2	0,909 9	0,911 5	0,913 1	0,9147	0,916 2	0,9177	
1,4	0,919 2	0,920 7	0,922 2	0,923 6	0,925 1	0,926 5	0,927 9	0,929 2	0,930 6	0,931 9	
1,5	0,933 2	0,934 5	0,935 7	0,9370	0,938 2	0,939 4	0,940 6	0,941 8	0,942 9	0,944 1	
1,6	0,945 2	0,946 3	0,947 4	0,948 4	0,949 5	0,950 5	0,951 5	0,952 5	0,953 5	0,954 5	
1,7	0,955 4	0,956 4	0,957 3	0,958 2	0,959 1	0,959 9	0,960 8	0,961 6	0,962 5	0,963 3	
1,8	0,964 1	0,964 9	0,965 6	0,9664	0,967 1	0,967 8	0,968 6	0,969 3	0,969 9	0,970 6	
1,9	0,9713	0,971 9	0,972 6	0,973 2	0,973 8	0,974 4	0,975 0	0,975 6	0,976 1	0,976 7	
2,0	0,977 2	0,977 9	0,978 3	0,9788	0,979 3	0,979 8	0,980 3	0,980 8	0,981 2	0,981 7	
2,1	6,982 1	0,982 6	0,983 0	0,983 4	0,983 8	0,984 2	0,984 6	0,985 0	0,985 4	0,985 7	
2,2	0,986 1	0,986 4	0,9868	0,9871	0,987 5	0,987 8	0,988 1	0,988 4	0,988 7	0,989 0	
2,3	0,989 3	0,989 6	0,9898	0,990 1	0,990 4	0,990 6	0,990 9	0,9911	0,991 3	0,991 6	
2,4	0,9918	0,992 0	0,992 2	0,992 5	0,992 7	0,992 9	0,993 1	0,993 2	0,993 4	0,993 6	
2,5	0,993 8	0,994 0	0,994 1	0,9943	0,994 5	0,994 6	0,9948	0,994 9	0,995 1	0,995 2	
2,6	0,995 3	0,995 5	0,995 6	0,9957	0,995 9	0,996 0	0,996 1	0,996 2	0,996 3	0,996 4	
2,7	0,9965	0,996 6	0,9967	0,9968	0,996 9	0,997 0	0,997 1	0,997 2	0,997 3	0,997 4	
2,8	0,997 4	0,997 5	0,997 6	0,9977	0,997 7	0,9978	0,9979	0,997 9	0,998 0	0,998 1	
2,9	0,998 1	0,998 2	0,998 2	0,9983	0,998 4	0,998 4	0,998 5	0,998 5	0,998 6	0,998 6	

TABLE POUR LES GRANDES VALEURS DE t

t	3,0	3,1	3,2	3,3	3,4	3,5	3,6	3,8	4,0	4,5
$\Pi(t)$	0,998 65	0,999 04	0,999 31	0,999 52	0,999 66	0,999 76	0,999 841	0,999 928	0,999 968	0,999 997

Nota: $\Pi(-t) = 1 - \Pi(t)$

ADDITIFS AU FORMULAIRE DE MATHÉMATIQUES POUR CERTAINES SPÉCIALITÉS DU GROUPEMENT B

L'ADDITIF 1 NE CONCERNE QUE LES SPÉCIALITÉS DE BTS DU GROUPEMENT B POUR LESQUELS LE PROGRAMME COMPORTE UNE ÉTUDE DES SÉRIES DE FOURIER.

L'ADDITIF 2 NE CONCERNE QUE LES SPÉCIALITÉS DE BTS DU GROUPEMENT B POUR LESQUELS LE PROGRAMME COMPORTE UNE ÉTUDE DE LA LOI DE WEIBULL.

ADDITIF 1

AU FORMULAIRE DE MATHEMATIQUES POUR CERTAINES SPECIALITES DU GROUPEMENT B

Cet additif ne concerne que les spécialités de BTS du groupement B pour lesquels le programme comporte une étude des <u>séries de Fourier</u>.

SERIES DE FOURIER :

f: fonction périodique de période T;

développement en série de Fourier :

$$s(t) = a_0 + \sum_{n=1}^{+\infty} \left(a_n \cos(n\omega t) + b_n \sin(n\omega t) \right) = \sum_{-\infty}^{+\infty} c_k e^{i \, k \, \omega t} \; , \; (n \in \mathbb{N}^*, \; k \in \mathbb{Z}).$$

$$a_0 = \frac{1}{T} \int_a^{a+T} f(t) \, \mathrm{d}t \ ; \qquad \qquad a_n = \frac{2}{T} \int_a^{a+T} f(t) \cos(n\omega t) \, \mathrm{d}t \ ; \qquad \qquad b_n = \frac{2}{T} \int_a^{a+T} f(t) \sin(n\omega t) \, \mathrm{d}t \, .$$

$$c_k = \frac{1}{T} \int_a^{a+T} f(t) \mathrm{e}^{-ik\omega t} \, \mathrm{d}t \ (k \in \mathbb{Z}) \ ; \qquad \qquad c_0 = a_0 \ ; \qquad \qquad \frac{a_n - ib_n}{2} = c_n \ ; \qquad \qquad \frac{a_n + ib_n}{2} = c_{-n} \quad (n \in \mathbb{N}^*).$$

ADDITIF 2

AU FORMULAIRE DE MATHEMATIQUES POUR CERTAINES SPECIALITES DU GROUPEMENT B

Cet additif ne concerne que les spécialités de BTS du groupement B pour lesquels le programme comporte une étude de la loi de Weibull.

LOI DE WEIBULL

Fonction de fiabilité : $R(t) = e^{-\left(\frac{t-\gamma}{\eta}\right)^{\delta}}$ $E(X) = A\eta + \gamma$ (M.T.B.F.)

 $\sigma(X) = B\eta$

β	A	В		β	A	В	β	A	В
				1,50	0,9027	0,613	4	0,9064	0,254
				1,55	0,8994	0,593	4,1	0,9077	0,249
				1,60	0,8966	0,574	4,2	0,9089	0,244
				1,65	0,8942	0,556	4,3	0,9102	0,239
0,20	120	1901		1,70	0,8922	0,540	4,4	0,9114	0,235
0,25	24	199		1,75	0,8906	0,525	4,5	0,9126	0,230
0,30	9,2605	50,08		1,80	0,8893	0,511	4,6	0,9137	0,226
0,35	5,0291	19,98		1,85	0,8882	0,498	4,7	0,9149	0,222
0,40	3,3234	10,44		1,90	0,8874	0,486	4,8	0,9160	0,218
0,45	2,4786	6,46		1,95	0,8867	0,474	4,9	0,9171	0,214
0,50	2	4,47		2	0,8862	0,463	5	0,9182	0,210
0,55	1,7024	3,35		2,1	0,8857	0,443	5,1	0,9192	0,207
0,60	1,5046	2,65		2,2	0,8856	0,425	5,2	0,9202	0,203
0,65	1,3663	2,18		2,3	0,8859	0,409	5,3	0,9213	0,200
0,70	1,2638	1,85		2,4	0,8865	0,393	5,4	0,9222	0,197
0,75	1,1906	1,61		2,5	0,8873	0,380	5,5	0,9232	0,194
0,80	1,1330	1,43		2,6	0,8882	0,367	5,6	0,9241	0,191
0,85	1,0880	1,29		2,7	0,8893	0,355	5,7	0,9251	0,188
0,90	1,0522	1,17		2,8	0,8905	0,344	5,8	0,9260	0,185
0,95	1,0234	1,08	H	2,9	0,8917	0,334	5,9	0,9269	0,183
1	1	1	Н	3	0,8930	0,325	6	0,9277	0,180
1,05	0,9603	0,934		3,1	0,8943	0,316	6,1	0,9286	0,177
1,10	0,9649	0,878		3,2	0,8957	0,307	6,2	0,9294	0,175
1,15	0,9517	0,830		3,3	0,8970	0,299	6,3	0,9302	0,172
1,20	0,9407	0,787	Н	3,4	0,8984	0,292	6,4	0,9310	0,170
1,25	0,9314	0,750		3,5	0,8997	0,285	6,5	0,9318	0,168
1,30	0,9236	0,716		3,6	0,9011	0,278	6,6	0,9325	0,166
1,35	0,9170	0,687		3,7	0,9025	0,272	6,7	0,9333	0,163
1,40	0,9114	0,660		3,8	0,9038	0,266	6,8	0,9340	0,161
1,45	0,9067	0,635		3,9	0,9051	0,260	6,9	0,9347	0,160

FORMULAIRE DE MATHÉMATIQUES

BTS: GROUPEMENT C

Agro-équipement

Charpente-couverture

Étude et réalisation d'outillages de mise en forme des matériaux

Industries céramiques

Industries céréalières

Industries des matériaux souples

Industries papetières

Mise en forme des alliages moulés

Mise en forme des matériaux par forgeage

Productique bois et ameublement

Productique textile

Réalisation d'ouvrages chaudronnés

Systèmes constructifs bois et habitat

Plusieurs résultats figurant dans ce formulaire ne sont pas au programme de TOUTES les spécialités de BTS appartenant à ce groupement.

1. RELATIONS FONCTIONNELLES

$$\ln(ab) = \ln a + \ln b$$
, où $a > 0$ et $b > 0$

$$\exp\left(a+b\right) = \exp a \times \exp b$$

$$a^t = e^{t \ln a}$$
, où $a > 0$

$$t^{\alpha} = e^{\alpha \ln t}$$
, où $t > 0$

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

$$\sin(a+b) = \sin a \cos b + \cos a \sin b$$

$$\cos(2t) = 2\cos^2 t - 1 = 1 - 2\sin^2 t$$

$$\sin(2t) = 2\sin t \cos t$$

$$\sin p + \sin q = 2\sin \frac{p+q}{2}\cos \frac{p-q}{2}$$

$$\sin p - \sin q = 2\sin \frac{p-q}{2}\cos \frac{p+q}{2}$$

$$\cos p + \cos q = 2\cos\frac{p+q}{2}\cos\frac{p-q}{2}$$

$$\cos p - \cos q = -2\sin\frac{p+q}{2}\sin\frac{p-q}{2}$$

$$\cos a \cos b = \frac{1}{2} \left[\cos (a+b) + \cos (a-b) \right]$$

$$\sin a \sin b = \frac{1}{2} \left[\cos (a-b) - \cos (a+b) \right]$$

$$\sin a \cos b = \frac{1}{2} \left[\sin (a+b) + \sin (a-b) \right]$$

$$e^{it} = \cos t + i \sin t$$

$$\cos t = \frac{1}{2} \left(e^{it} + e^{-it} \right)$$

$$\sin t = \frac{1}{2i} \left(e^{it} - e^{-it} \right)$$

$$e^{at} = e^{\alpha t} (\cos(\beta t) + i\sin(\beta t)), \text{ où } a = \alpha + i\beta$$

2. CALCUL DIFFERENTIEL ET INTEGRAL

a) Limites usuelles

Comportement à l'infini

$$\lim_{t\to +\infty} \ln t = +\infty \; ;$$

$$\lim e^t = +\infty ;$$

$$\lim_{t\to-\infty} e^t = 0 ;$$

Si
$$\alpha > 0$$
, $\lim_{t \to +\infty} t^{\alpha} = +\infty$; si $\alpha < 0$, $\lim_{t \to +\infty} t^{\alpha} = 0$

Croissances comparées à l'infini

Si
$$\alpha > 0$$
, $\lim_{t \to +\infty} \frac{e^t}{t^{\alpha}} = +\infty$

Si
$$\alpha > 0$$
, $\lim_{t \to +\infty} \frac{\ln t}{t^{\alpha}} = 0$

Comportement à l'origine

$$\lim_{t\to 0} \ln t = -\infty$$

Si
$$\alpha > 0$$
, $\lim_{t \to 0} t^{\alpha} = 0$; si $\alpha < 0$, $\lim_{t \to 0} t^{\alpha} = +\infty$

Si
$$\alpha > 0$$
, $\lim_{t \to 0} t^{\alpha} \ln t = 0$.

b) Dérivées et primitives

Fonctions usuelles

f(t)	f'(t)	f(t)	f'(t)
ln t	$\frac{1}{t}$	Arc sin t	$\frac{1}{\sqrt{1-t^2}}$
e^{t} $t^{\alpha} \ (\alpha \in \mathbb{R})$	e^t $\alpha t^{\alpha-1}$	Arc tan t	$\frac{1}{1+t^2}$
$\sin t$	cos t	$e^{at} \ (a \in \mathbb{C})$	ae ^{at}
cos t	$-\sin t$		
tan <i>t</i>	$\frac{1}{\cos^2 t} = 1 + \tan^2 t$		

Opérations

$$(u+v)' = u' + v'$$

$$(ku)' = ku'$$

$$(uv)' = u'v + uv'$$

$$\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$$

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

$$(u+v)' = u' + v'$$

$$(u+v)' = (v' \circ u)u'$$

$$(e^u)' = e^u u'$$

$$(\ln u)' = \frac{u'}{u}, u \text{ à valeurs strictement positives}$$

$$(u^a)' = \alpha u^{\alpha-1} u'$$

c) Calcul intégral

Valeur moyenne de f sur [a, b]:
$$\frac{1}{b-a} \int_a^b f(t) dt$$
 Intégration par parties:
$$\int_a^b u(t) \ v'(t) dt = [u(t)v(t)]_a^b - \int_a^b u'(t) \ v(t) dt$$

d) Développements limités

$$\begin{aligned} \mathbf{e}^t &= 1 + \frac{t}{1!} + \frac{t^2}{2!} + \dots + \frac{t^n}{n!} + t^n \varepsilon \left(t \right) \\ &\frac{1}{1+t} = 1 - t + t^2 + \dots + \left(-1 \right)^n t^n + t^n \varepsilon \left(t \right) \\ &\ln(1+t) = t - \frac{t^2}{2} + \frac{t^3}{3} + \dots + \left(-1 \right)^{n-1} \frac{t^n}{n} + t^n \varepsilon \left(t \right) \end{aligned} \\ &\cos t = \frac{t^2}{1!} - \frac{t^3}{3!} + \frac{t^5}{5!} + \dots + \left(-1 \right)^p \frac{t^{2p+1}}{(2p+1)!} + t^{2p+1} \varepsilon \left(t \right) \\ &\cos t = 1 - \frac{t^2}{2!} + \frac{t^4}{4!} + \dots + \left(-1 \right)^p \frac{t^{2p+1}}{(2p+1)!} + t^{2p+1} \varepsilon \left(t \right) \\ &\left(1 + t \right)^{\alpha} = 1 + \frac{t^4}{1!} t + \frac{\alpha(\alpha - 1)}{2!} t^2 + \dots + \frac{\alpha(\alpha - 1) \cdot \dots \cdot (\alpha - n + 1)}{n!} t^n + t^n \varepsilon \left(t \right) \end{aligned}$$

e) Equations différentielles

Équations	Solutions sur un intervalle I
a(t) x' + b(t) x = 0	$f(t) = ke^{-G(t)}$ où G est une primitive de $t \mapsto \frac{b(t)}{a(t)}$
ax'' + bx' + cx = 0	Si $\Delta > 0$, $f(t) = \lambda e^{r_1 t} + \mu e^{r_2 t}$ où r_1 et r_2 sont les racines de l'équation caractéristique
	Si $\Delta = 0$, $f(t) = (\lambda t + \mu)e^{rt}$ où r est la racine double de l'équation caractéristique
$ar^2 + br + c = 0$	Si $\Delta < 0$, $f(t) = [\lambda \cos(\beta t) + \mu \sin(\beta t)]e^{\alpha t}$ où $r_1 = \alpha + i\beta$ et $r_2 = \alpha - i\beta$ sont les racines
de discriminant Δ	complexes conjuguées de l'équation caractéristique.

L. B.O. FORMULAIRES
N°10
6 MARS
DE MATHÉMATI DE MATHÉMATIQUES BTS

3. PROBABILITES

a) Loi binomiale
$$P(X=k) = C_n^k p^k q^{n-k}$$
 où $C_n^k = \frac{n!}{k!(n-k)!}$; $E(X) = np$; $\sigma(X) = \sqrt{npq}$

b) Loi de Poisson

$$P(X=k) = \frac{e^{-\lambda} \lambda^k}{k!}$$

$$E(X) = \lambda$$

$$V(X) = \lambda$$

k 2	0,2	0,3	0,4	0,5	0,6
0	0,8187	0,7408	0,6703	0,6065	0,5488
1	0,1637	0,2222	0,2681	0,3033	0,3293
2	0,0164	0,0333	0,0536	0,0758	0,0988
3	0,0011	0,0033	0,0072	0,0126	0,0198
4	0,0000	0,0003	0,0007	0,0016	0,0030
5		0,0000	0,0001	0,0002	0,0004
6			0,0000	0,0000	0,0000

k	1	1.5	2	3	4	5	6	7	8	9	10
0	0.368	0.223	0.135	0.050	0.018	0.007	0.002	0.001	0.000	0.000	0.000
1	0.368	0.335	0.271	0.149	0.073	0.034	0.015	0.006	0.003	0.001	0.000
2	0.184	0.251	0.271	0.224	0.147	0.084	0.045	0.022	0.011	0.005	0.002
3	0.061	0.126	0.180	0.224	0.195	0.140	0.089	0.052	0.029	0.015	0.008
4	0.015	0.047	0.090	0.168	0.195	0.176	0.134	0.091	0.057	0.034	0.019
5	0.003	0.014	0.036	0.101	0.156	0.176	0.161	0.128	0.092	0.061	0.038
6	0.001	0.004	0.012	0.050	0.104	0.146	0.161	0.149	0.122	0.091	0.063
7	0.000	0.001	0.003	0.022	0.060	0.104	0.138	0.149	0.140	0.117	0.090
8		0.000	0.001	0.008	0.030	0.065	0.103	0.130	0.140	0.132	0.113
9			0.000	0.003	0.013	0.036	0.069	0.101	0.124	0.132	0.125
10				0.001	0.005	0.018	0.041	0.071	0.099	0.119	0.125
11				0.000	0.002	0.008	0.023	0.045	0.072	0.097	0.114
12					0.001	0.003	0.011	0.026	0.048	0.073	0.095
13					0.000	0.001	0.005	0.014	0.030	0.050	0.073
14						0.000	0.002	0.007	0.017	0.032	0.052
15							0.001	0.003	0.009	0.019	0.035
16							0.000	0.001	0.005	0.011	0.022
17								0.001	0.002	0.006	0.013
18								0,000	0.001	0.003	0.007
19									0.000	0.001	0.004
20										0.001	0.002
21										0,000	0.001
22											0.000

c) Loi exponentielle

Fonction de fiabilité :
$$R(t) = e^{-\lambda t}$$
 $E(X) = \frac{1}{\lambda}$ (M.T.B.F.) $\sigma(X) = \frac{1}{\lambda}$

$$E(X) = \frac{1}{2}$$
 (M.T.B.F.)

$$\sigma(X) = \frac{1}{\lambda}$$

d) Loi normale

La loi normale centrée réduite est caractérisée par la densité de probabilité : $f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$

EXTRAITS DE LA TABLE DE LA FONCTION INTEGRALE DE LA LOI NORMALE CENTREE, REDUITE $\mathcal{N}(0,1)$

$$\Pi(t) = P(T \le t) = \int_{-\infty}^{t} f(x) dx$$

						0	t			
t	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,500 0	0,504 0	0,508 0	0,512 0	0,516 0	0,519 9	0,523 9	0,527 9	0,531 9	0,535 9
0,1	0,539 8	0,543 8	0,547 8	0,551 7	0,555 7	0,559 6	0,563 6	0,567 5	0,571 4	0,575 3
0,2	0,579 3	0,583 2	0,587 1	0,591 0	0,5948	0,598 7	0,602 6	0,606 4	0,610 3	0,614 1
0,3	0,617 9	0,621 7	0,625 5	0,629 3	0,633 1	0,6368	0,640 6	0,644 3	0,648 0	0,651 7
0,4	0,655 4	0,659 1	0,662 8	0,666 4	0,670 0	0,673 6	0,677 2	0,680 8	0,684 4	0,687 9
0,5	0,691 5	0,695 0	0,698 5	0,701 9	0,705 4	0,7088	0,712 3	0,715 7	0,719 0	0,722 4
0,6	0,725 7	0,729 0	0,732 4	0,735 7	0,738 9	0,742 2	0,745 4	0,748 6	0,751 7	0,754 9
0,7	0,758 0	0,761 1	0,764 2	0,767 3	0,770 4	0,773 4	0,776 4	0,779 4	0,782 3	0,785 2
0,8	0,788 1	0,791 0	0,793 9	0,7967	0,799 5	0,802 3	0,805 1	0,807 8	0,810 6	0,813 3
0,9	0,8159	0,818 6	0,821 2	0,823 8	0,825 4	0,828 9	0,831 5	0,834 0	0,836 5	0,838 9
1,0	0,841 3	0,843 8	0,846 1	0,848 5	0,850 8	0,853 1	0,855 4	0,857 7	0,859 9	0,862 1
1,1	0,864 3	0,866 5	0,868 6	0,870 8	0,872 9	0,874 9	0,877 0	0,879 0	0,881 0	0,883 0
1,2	0,884 9	0,886 9	0,888 8	0,890 7	0,892 5	0,894 4	0,896 2	0,898 0	0,899 7	0,901 5
1,3	0,903 2	0,904 9	0,906 6	0,908 2	0,909 9	0,911 5	0,913 1	0,9147	0,916 2	0,9177
1,4	0,919 2	0,920 7	0,922 2	0,923 6	0,925 1	0,926 5	0,927 9	0,929 2	0,930 6	0,931 9
1,5	0,933 2	0,934 5	0,935 7	0,937 0	0,938 2	0,939 4	0,940 6	0,941 8	0,942 9	0,944 1
1,6	0,945 2	0,946 3	0,947 4	0,948 4	0,949 5	0,950 5	0,951 5	0,952 5	0,953 5	0,954 5
1,7	0,955 4	0,956 4	0,957 3	0,958 2	0,959 1	0,959 9	0,960 8	0,961 6	0,962 5	0,963 3
1,8	0,964 1	0,964 9	0,965 6	0,966 4	0,967 1	0,9678	0,968 6	0,969 3	0,969 9	0,970 6
1,9	0,971 3	0,971 9	0,972 6	0,973 2	0,973 8	0,974 4	0,975 0	0,975 6	0,976 1	0,976 7
2,0	0,977 2	0,977 9	0,978 3	0,978 8	0,979 3	0,979 8	0,980 3	0,9808	0,981 2	0,981 7
2,1	0,982 1	0,982 6	0,983 0	0,983 4	0,983 8	0,984 2	0,984 6	0,985 0	0,985 4	0,985 7
2,2	0,986 1	0,986 4	0,986 8	0,987 1	0,987 5	0,9878	0,988 1	0,988 4	0,988 7	0,989 0
2,3	0,989 3	0,989 6	0,9898	0,990 1	0,990 4	0,990 6	0,990 9	0,991 1	0,991 3	0,991 6
2,4	0,991 8	0,992 0	0,992 2	0,992 5	0,992 7	0,992 9	0,993 1	0,993 2	0,993 4	0,993 6
2,5	0,993 8	0,994 0	0,994 1	0,9943	0,994 5	0,994 6	0,9948	0,994 9	0,995 1	0,995 2
2,6	0,995 3	0,995 5	0,995 6	0,995 7	0,995 9	0,996 0	0,996 1	0,996 2	0,996 3	0,996 4
2,7	0,996 5	0,996 6	0,996 7	0,9968	0,996 9	0,997 0	0,9971	0,997 2	0,997 3	0,997 4
2,8	0,997 4	0,997 5	0,997 6	0,997 7	0,997 7	0,997 8	0,997 9	0,997 9	0,998 0	0,998 1
2,9	0,998 1	0,998 2	0,998 2	0,998 3	0,998 4	0,998 4	0,998 5	0,998 5	0,998 6	0,998 6

TABLE POUR LES GRANDES VALEURS DE t

t	3,0	3,1	3,2	3,3	3,4	3,5	3,6	3,8	4,0	4,5
$\Pi(t)$	0,998 65	0,999 04	0,999 31	0,999 52	0,999 66	0,999 76	0,999 841	0,999 928	0,999 968	0,999 997

Nota: $\Pi(-t) = 1 - \Pi(t)$

FORMULAIRE DE MATHÉMATIQUES

BTS: GROUPEMENT D

Analyses biologiques

Biochimiste

Biotechnologie

Hygiène-propreté-environnement

Métiers de l'eau

Peintures, encres et adhésifs

Plasturgie

Qualité dans les industries alimentaires et les bio-industries

Plusieurs résultats figurant dans ce formulaire ne sont pas au programme de TOUTES les spécialités de BTS appartenant à ce groupement.

1. RELATIONS FONCTIONNELLES

$$\ln(ab) = \ln a + \ln b, \text{ où } a > 0 \text{ et } b > 0$$

$$\exp(a+b) = \exp a \times \exp b$$

$$a^t = e^{t \ln a}, \text{ où } a > 0$$

$$t^{\alpha} = e^{\alpha \ln t}, \text{ où } t > 0$$

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

$$\sin(a+b) = \sin a \cos b + \cos a \sin b$$

$$\cos(2t) = 2\cos^2 t - 1 = 1 - 2\sin^2 t$$

$$\begin{aligned} \mathbf{e}^{\mathbf{i}t} &= \cos t + \mathbf{i} \sin t \\ \cos t &= \frac{1}{2} \left(\mathbf{e}^{\mathbf{i}t} + \mathbf{e}^{-\mathbf{i}t} \right) \\ \sin t &= \frac{1}{2\mathbf{i}} \left(\mathbf{e}^{\mathbf{i}t} - \mathbf{e}^{-\mathbf{i}t} \right) \\ \mathbf{e}^{at} &= \mathbf{e}^{\alpha t} \left(\cos \left(\beta t \right) + \mathbf{i} \sin \left(\beta t \right) \right), \text{ où } a = \alpha + \mathbf{i}\beta \end{aligned}$$

2. CALCUL DIFFERENTIEL ET INTEGRAL

a) Limites usuelles

 $\sin(2t) = 2\sin t \cos t$

Comportement à l'infini

$$\begin{split} &\lim_{t \to +\infty} \ln t = +\infty \ ; \\ &\lim_{t \to +\infty} e^t = +\infty \ ; \\ &\lim_{t \to -\infty} e^t = 0 \ ; \\ &\operatorname{Si} \alpha > 0, \lim_{t \to +\infty} t^{\alpha} = +\infty \ ; \quad \operatorname{si} \alpha < 0, \lim_{t \to +\infty} t^{\alpha} = 0 \end{split}$$

Croissances comparées à l'infini

Si
$$\alpha > 0$$
, $\lim_{t \to +\infty} \frac{e^t}{t^{\alpha}} = +\infty$
Si $\alpha > 0$, $\lim_{t \to +\infty} \frac{\ln t}{t^{\alpha}} = 0$

Comportement à l'origine

$$\lim_{t \to 0} \ln t = -\infty$$

$$t \to 0$$
Si $\alpha > 0$, $\lim_{t \to 0} t^{\alpha} = 0$; si $\alpha < 0$, $\lim_{t \to 0} t^{\alpha} = +\infty$
Si $\alpha > 0$, $\lim_{t \to 0} t^{\alpha} \ln t = 0$.

b) Dérivées et primitives

Fonctions usuelles

f(t)	f'(t)	f(t)	f'(t)
$\ln t$	$\frac{1}{t}$	Arc sin t	$\frac{1}{\sqrt{1-t^2}}$
e^t $t^{\alpha} \ (\alpha \in \mathbb{R})$	e^t $\alpha t^{\alpha-1}$	Arc tan <i>t</i>	$\frac{1}{1+t^2}$
sin t	cos t	$e^{at} \ (a \in \mathbb{C})$	ae ^{at}
cos t	- sin t		
tan t	$\frac{1}{\cos^2 t} = 1 + \tan^2 t$		

Opérations

$$(u+v)' = u' + v'$$

$$(ku)' = ku'$$

$$(uv)' = u'v + uv'$$

$$\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$$

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

$$(u^{\alpha})' = \alpha u^{\alpha-1} u'$$

$$(u^{\alpha})' = \alpha u^{\alpha-1} u'$$

c) Calcul intégral

Valeur moyenne de f sur [a,b]: $\frac{1}{b-a} \int_a^b f(t) dt$ Intégration par parties: $\int_a^b u(t) \ v'(t) \ dt = [u(t)v(t)]_a^b - \int_a^b u'(t) \ v(t) \ dt$

d) Développements limités

$$\begin{aligned} \mathbf{e}^t &= 1 + \frac{t}{1!} + \frac{t^2}{2!} + \dots + \frac{t^n}{n!} + t^n \mathbf{\epsilon} \left(t \right) \\ &= \frac{1}{1+t} = 1 - t + t^2 + \dots + (-1)^n t^n + t^n \mathbf{\epsilon} \left(t \right) \\ &= \ln(1+t) = t - \frac{t^2}{2} + \frac{t^3}{3} + \dots + (-1)^{n-1} \frac{t^n}{n} + t^n \mathbf{\epsilon} \left(t \right) \end{aligned} \qquad \begin{aligned} &\sin t = \frac{t}{1!} - \frac{t^3}{3!} + \frac{t^5}{5!} + \dots + (-1)^p \frac{t^{2p+1}}{(2p+1)!} + t^{2p+1} \mathbf{\epsilon} \left(t \right) \\ &\cos t = 1 - \frac{t^2}{2!} + \frac{t^4}{4!} + \dots + (-1)^p \frac{t^{2p}}{(2p)!} + t^{2p} \mathbf{\epsilon} \left(t \right) \\ &\sin t = \frac{t}{1!} - \frac{t^3}{3!} + \frac{t^5}{5!} + \dots + (-1)^p \frac{t^{2p+1}}{(2p+1)!} + t^{2p+1} \mathbf{\epsilon} \left(t \right) \end{aligned}$$

e) Equations différentielles

Équations	Solutions sur un intervalle I
a(t) x' + b(t) x = 0	$f(t) = ke^{-G(t)}$ où G est une primitive de $t \mapsto \frac{b(t)}{a(t)}$
ax'' + bx' + cx = 0	Si $\Delta > 0$, $f(t) = \lambda e^{r_1 t} + \mu e^{r_2 t}$ où r_1 et r_2 sont les racines de l'équation caractéristique
équation caractéristique :	Si $\Delta = 0$, $f(t) = (\lambda t + \mu)e^{rt}$ où r est la racine double de l'équation caractéristique
$ar^2 + br + c = 0$	Si $\Delta < 0$, $f(t) = [\lambda \cos(\beta t) + \mu \sin(\beta t)]e^{\alpha t}$ où $r_1 = \alpha + i\beta$ et $r_2 = \alpha - i\beta$ sont les racines
de discriminant Δ	complexes conjuguées de l'équation caractéristique.

3. PROBABILITES

a) Loi binomiale
$$P(X = k) = \mathbb{C}_n^k p^k q^{n-k}$$

a) Loi binomiale
$$P(X = k) = C_n^k p^k q^{n-k}$$
 où $C_n^k = \frac{n!}{k!(n-k)!}$; $E(X) = np$; $\sigma(X) = \sqrt{npq}$

$$\sigma(X) = \sqrt{npq}$$

b) Loi de Poisson

$$P(X=k) = \frac{e^{-\lambda} \lambda^k}{k!}$$

$$E(X) = \lambda$$

$$V(X) = \lambda$$

k λ	0,2	0,3	0,4	0,5	0,6
0	0,8187	0,7408	0,6703	0,6065	0,5488
1	0,1637	0,2222	0,2681	0,3033	0,3293
2	0,0164	0,0333	0,0536	0,0758	0,0988
3	0,0011	0,0033	0,0072	0,0126	0,0198
4	0,0000	0,0003	0,0007	0,0016	0,0030
5		0,0000	0,0001	0,0002	0,0004
6			0,0000	0,0000	0,0000

		,									
k λ	1	1.5	2	3	4	5	6	7	8	9	10
0	0.368	0.223	0.135	0.050	0.018	0.007	0.002	0.001	0.000	0.000	0.000
1	0.368	0.335	0.271	0.149	0.073	0.034	0.015	0.006	0.003	0.001	0.000
2	0.184	0.251	0.271	0.224	0.147	0.084	0.045	0.022	0.011	0.005	0.002
3	0.061	0.126	0.180	0.224	0.195	0.140	0.089	0.052	0.029	0.015	0.008
4	0.015	0.047	0.090	0.168	0.195	0.176	0.134	0.091	0.057	0.034	0.019
5	0.003	0.014	0.036	0.101	0.156	0.176	0.161	0.128	0.092	0.061	0.038
6	0.001	0.004	0.012	0.050	0.104	0.146	0.161	0.149	0.122	0.091	0.063
7	0.000	0.001	0.003	0.022	0.060	0.104	0.138	0.149	0.140	0.117	0.090
8		0.000	0.001	0.008	0.030	0.065	0.103	0.130	0.140	0.132	0.113
9			0.000	0.003	0.013	0.036	0.069	0.101	0.124	0.132	0.125
10				0.001	0.005	0.018	0.041	0.071	0.099	0.119	0.125
11				0.000	0.002	0.008	0.023	0.045	0.072	0.097	0.114
12					0.001	0.003	0.011	0.026	0.048	0.073	0.095
13					0.000	0.001	0.005	0.014	0.030	0.050	0.073
14						0.000	0.002	0.007	0.017	0.032	0.052
15							0.001	0.003	0.009	0.019	0.035
16							0.000	0.001	0.005	0.011	0.022
17								0.001	0.002	0.006	0.013
18								0.000	0.001	0.003	0.007
19									0.000	0.001	0.004
20										0.001	0.002
21										0.000	0.001
22											0.000

c) Loi exponentielle

Fonction de fiabilité :
$$R(t) = e^{-\lambda t}$$
 $E(X) = \frac{1}{\lambda}$ (M.T.B.F.) $\sigma(X) = \frac{1}{\lambda}$

$$E(X) = \frac{1}{\lambda}$$
 (M.T.B.F.)

$$\sigma(X) = \frac{1}{2}$$

d) Loi normale

La loi normale centrée réduite est caractérisée par la densité de probabilité : $f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$

EXTRAITS DE LA TABLE DE LA FONCTION INTEGRALE DE LA LOI NORMALE CENTREE, REDUITE $\mathcal{N}(0,1)$

$$\Pi(t) = P(T \le t) = \int_{-\infty}^{t} f(x) dx$$

						0	t			
t	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,500 0	0,504 0	0,508 0	0,512 0	0,516 0	0,519 9	0,523 9	0,527 9	0,531 9	0,535 9
0,1	0,539 8	0,543 8	0,547 8	0,551 7	0,555 7	0,559 6	0,563 6	0,567 5	0,571 4	0,575 3
0,2	0,579 3	0,583 2	0,587 1	0,591 0	0,594 8	0,598 7	0,602 6	0,606 4	0,610 3	0,614 1
0,3	0,617 9	0,621 7	0,625 5	0,629 3	0,633 1	0,636 8	0,640 6	0,644 3	0,648 0	0,651 7
0,4	0,655 4	0,659 1	0,662 8	0,666 4	0,670 0	0,673 6	0,677 2	0,680 8	0,684 4	0,687 9
0,5	0,691 5	0,695 0	0,698 5	0,701 9	0,705 4	0,708 8	0,712 3	0,715 7	0,719 0	0,722 4
0,6	0,725 7	0,729 0	0,732 4	0,735 7	0,738 9	0,742 2	0,745 4	0,748 6	0,751 7	0,754 9
0,7	0,758 0	0,761 1	0,764 2	0,767 3	0,770 4	0,773 4	0,776 4	0,779 4	0,782 3	0,785 2
0,8	0,788 1	0,791 0	0,793 9	0,796 7	0,799 5	0,802 3	0,805 1	0,807 8	0,810 6	0,813 3
0,9	0,815 9	0,818 6	0,821 2	0,823 8	0,825 4	0,828 9	0,831 5	0,834 0	0,836 5	0,838 9
1,0	0,841 3	0,843 8	0,846 1	0,848 5	0,850 8	0,853 1	0,855 4	0,857 7	0,859 9	0,862 1
1,1	0,8643	0,866 5	0,868 6	0,870 8	0,872 9	0,874 9	0,877 0	0,879 0	0,881 0	0,883 0
1,2	0,884 9	0,886 9	0,888 8	0,890 7	0,892 5	0,894 4	0,896 2	0,898 0	0,899 7	0,901 5
1,3	0,903 2	0,904 9	0,906 6	0,908 2	0,909 9	0,911 5	0,913 1	0,9147	0,916 2	0,917 7
1,4	0,919 2	0,920 7	0,922 2	0,923 6	0,925 1	0,926 5	0,927 9	0,929 2	0,930 6	0,931 9
1,5	0,933 2	0,934 5	0,935 7	0,937 0	0,938 2	0,939 4	0,940 6	0,941 8	0,942 9	0,944 1
1,6	0,945 2	0,946 3	0,947 4	0,948 4	0,949 5	0,950 5	0,951 5	0,952 5	0,953 5	0,954 5
1,7	0,955 4	0,956 4	0,957 3	0,958 2	0,959 1	0,959 9	0,960 8	0,961 6	0,962 5	0,963 3
1,8	0,964 1	0,964 9	0,965 6	0,966 4	0,967 1	0,9678	0,968 6	0,969 3	0,969 9	0,970 6
1,9	0,971 3	0,971 9	0,972 6	0,973 2	0,973 8	0,974 4	0,975 0	0,975 6	0,976 1	0,9767
2,0	0,977 2	0,977 9	0,978 3	0,978 8	0,979 3	0,9798	0,980 3	0,980 8	0,981 2	0,981 7
2,1	0,982 1	0,982 6	0,983 0	0,983 4	0,983 8	0,984 2	0,984 6	0,985 0	0,985 4	0,985 7
2,2	0,986 1	0,986 4	0,986 8	0,987 1	0,987 5	0,987 8	0,988 1	0,988 4	0,988 7	0,989 0
2,3	0,989 3	0,989 6	0,989 8	0,990 1	0,990 4	0,990 6	0,990 9	0,991 1	0,9913	0,991 6
2,4	0,9918	0,992 0	0,992 2	0,992 5	0,992 7	0,992 9	0,993 1	0,993 2	0,993 4	0,993 6
2,5	0,993 8	0,994 0	0,994 1	0,994 3	0,994 5	0,994 6	0,994 8	0,994 9	0,995 1	0,995 2
2,6	0,995 3	0,995 5	0,995 6	0,995 7	0,995 9	0,996 0	0,996 1	0,996 2	0,996 3	0,996 4
2,7	0,996 5	0,996 6	0,996 7	0,996 8	0,9969	0,997 0	0,997 1	0,997 2	0,997 3	0,997 4
2,8	0,997 4	0,997 5	0,997 6	0,997 7	0,997 7	0,9978	0,9979	0,997 9	0,998 0	0,998 1
2,9	0,998 1	0,998 2	0,998 2	0,998 3	0,998 4	0,998 4	0,998 5	0,998 5	0,998 6	0,998 6

TABLE POUR LES GRANDES VALEURS DE t

٠.											
	t	3,0	3,1	3,2	3,3	3,4	3,5	3,6	3,8	4,0	4,5
	$\Pi(t)$	0,998 65	0,999 04	0,999 31	0,999 52	0,999 66	0,999 76	0,999 841	0,999 928	0,999 968	0,999 997

Nota : $\Pi(-t) = 1 - \Pi(t)$

FORMULAIRE DE MATHÉMATIQUES

BTS: AGENCEMENT DE L'ENVIRONNEMENT ARCHITECTURAL

BTS: ASSISTANT EN CRÉATION INDUSTRIELLE

1. RELATIONS FONCTIONNELLES

$$\ln(ab) = \ln a + \ln b, \text{ où } a > 0 \text{ et } b > 0$$

$$\exp(a + b) = \exp a \times \exp b$$

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

$$\sin(a+b) = \sin a \cos b + \cos a \sin b$$

$$\cos(2t) = 2\cos^2 t - 1 = 1 - 2\sin^2 t$$

$$\sin(2t) = 2\sin t \cos t$$

2. CALCUL DIFFERENTIEL ET INTEGRAL

a) Limites usuelles

Comportement à l'infini $\lim_{t \to +\infty} \ln t = +\infty ;$

$$\lim_{t \to +\infty} e^t = +\infty ;$$

$$\lim_{t \to -\infty} e^t = 0 ;$$

$$\operatorname{Si} \alpha > 0, \lim_{t \to +\infty} t^{\alpha} = +\infty ; \quad \operatorname{si} \alpha < 0, \lim_{t \to +\infty} t^{\alpha} = 0$$

Croissances comparées à l'infini

Si
$$\alpha > 0$$
, $\lim_{t \to +\infty} \frac{e^t}{t^{\alpha}} = +\infty$
Si $\alpha > 0$, $\lim_{t \to +\infty} \frac{\ln t}{t^{\alpha}} = 0$

Comportement à l'origine

$$\begin{split} &\lim_{t\to 0} \ln t = -\infty \\ &\text{Si } \alpha > 0, \ \lim_{t\to 0} t^{\alpha} = 0 \ ; \qquad &\text{si } \alpha < 0, \ \lim_{t\to 0} t^{\alpha} = +\infty \\ &\text{Si } \alpha > 0, \ \lim_{t\to 0} t^{\alpha} \ln t = 0 \ . \end{split}$$

b) Dérivées et primitives

Fonctions usuelles

f(t)	f'(t)	f(t)	f'(t)
ln t	$\frac{1}{t}$	sin t	cos t
e ^t	e ^f	cos t	$-\sin t$
$t^{\alpha} \ (\alpha \in \mathbb{R}^*)$	$\alpha t^{\alpha-1}$	tan t	$\frac{1}{\cos^2 t} = 1 + \tan^2 t$

Opérations

$$(u+v)' = u'+v'$$

$$(ku)' = ku'$$

$$(uv)' = u'v+uv'$$

$$\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$$

$$\left(\frac{u}{v}\right)' = \frac{u'v-uv'}{v^2}$$

$$(v \circ u)' = (v' \circ u)u'$$

$$(e^u)' = e^u u'$$

$$(\ln u)' = \frac{u'}{u}, u \text{ à valeurs strictement positives}$$

$$(u^{\alpha})' = \alpha u^{\alpha-1} u'$$

c) Calcul intégral

Valeur moyenne de f sur [a, b]: $\frac{1}{b-a}\int_a^b f(t) dt$

d) Equations différentielles

Équations	Solutions sur un intervalle I
a(t)x'+b(t)x=0	$f(t) = ke^{-G(t)}$ où G est une primitive de $t \mapsto \frac{b(t)}{a(t)}$
$x'' + \omega^2 x = 0$	$x(t) = \lambda \cos(\omega t) + \mu \sin(\omega t)$

3. PROBABILITES

a) Loi binomiale
$$P(X = k) = \mathbb{C}_n^k p^k q^{n-k}$$
 où $\mathbb{C}_n^k = \frac{n!}{k!(n-k)!}$; $E(X) = np$; $\sigma(X) = \sqrt{npq}$

b) Loi de Poisson

$$P(X=k) = \frac{e^{-\lambda} \lambda^k}{k!}$$

$$E(X) = \lambda$$

$$V(X) = \lambda$$

k A	0,2	0,3	0,4	0,5	0,6
0	0,8187	0,7408	0,6703	0,6065	0,5488
1	0,1637	0,2222	0,2681	0,3033	0,3293
2	0,0164	0,0333	0,0536	0,0758	0,0988
3	0,0011	0,0033	0,0072	0,0126	0,0198
4	0,0000	0,0003	0,0007	0,0016	0,0030
5		0,0000	0,0001	0,0002	0,0004
6			0,0000	0,0000	0,0000

k 2	1	1.5	2	3	4	5	6	7	8	9	10
0	0.368	0.223	0.135	0.050	0.018	0.007	0.002	0.001	0.000	0.000	0.000
1	0.368	0.335	0.271	0.149	0.073	0.034	0.015	9,006	0.003	0.001	0.000
2	0.184	0.251	0.271	0.224	0.147	0.084	0.045	0.022	9.011	0.005	0.002
3	0.061	0.126	0.180	0.224	0.195	0.140	0.089	0.052	0.029	0.015	9.008
4	0.015	0.047	0.090	0.168	0.195	0.176	0.134	0.091	0.057	0.034	0.019
5	0.003	0.014	0.036	0.101	0.156	0.176	0.161	0.128	0.092	0.061	0.038
6	0.001	0.004	0.012	0.050	0.104	0.146	0.161	0.149	0.122	0.091	0.063
7	0.000	0.001	0.003	0.022	0.060	0.104	0.138	0.149	0.140	0.117	0.090
8		0.000	0.001	0.008	0.030	0.065	0.103	0.130	0.140	0.132	0.113
9			0.000	0.003	.0.013	0.036	0.069	0.101	0.124	0.132	0.125
10				0.001	0.005	0.018	0.041	0.071	0.099	0.119	0.125
11				0.000	0.002	0.008	0.023	0.045	0.072	0.097	0.114
12					0.001	0.003	0.011	0.026	0.048	0.073	0.095
13					0.000	0.001	0.005	0.014	0.030	0.050	0.073
14						0.000	0.002	0.007	0.017	0.032	0.052
15							0.061	0.003	0.009	0.019	0.035
16							0.000	0.001	0.005	0.011	0.022
17								0.001	0.002	0.006	0.013
18								0,000	0.001	0.003	0.007
19			t						0.000	0.001	0.004
20			Ŀ							0.001	0.002
21										0,000	0.001
22											0.000

c) Loi normale

La loi normale centrée réduite est caractérisée par la densité de probabilité : $f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$

EXTRAITS DE LA TABLE DE LA FONCTION INTEGRALE DE LA LOI NORMALE CENTREE, REDUITE $\mathcal{N}(0,1)$

$$\Pi(t) = P(T \le t) = \int_{-\infty}^{t} f(x) dx$$

						0	t			
t	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,500 0	0,504 0	0,508 0	0,512 0	0,516 0	0,519 9	0,523 9	0,527 9	0,531 9	0,535 9
0,1	0,539 8	0,543 8	0,547 8	0,5517	0,555 7	0,559 6	0,563 6	9,567 5	0,571 4	0,575 3
0,2	0,579 3	0,583 2	0,587 1	0,591 0	0,5948	0,598 7	0,602 6	0,606 4	0,610 3	0,614 1
0,3	0,6179	0,621 7	0,625 5	0,629 3	0,633 1	0,636 8	0,640 6	0,644 3	0,648 0	0,651 7
0,4	0,655 4	0,659 1	0,662 8	0,6664	0,670 0	0,673 6	0,677 2	0,680 8	0,684 4	0,687 9
0,5	0,691 5	0,695 0	0,698 5	0,7019	0,705 4	0,708 8	0,712 3	0,715 7	0,719 0	0,722 4
0,6	0,725 7	0,729 0	0,732 4	0,7357	0,738 9	0,742 2	0,745 4	0,748 6	0,751 7	0,754 9
0,7	0,758 0	0,761 1	0,764 2	0,7673	0,770 4	0,773 4	0,776 4	0,779 4	0,782 3	0,785 2
0,8	0,788 1	0,791 0	0,793 9	0,7967	0,799 5	0,802 3	0,805 1	0,807 8	0,810 6	0,813 3
0,9	0,815 9	0,818 6	0,821 2	0,823 8	0,825 4	0,828 9	0,831 5	0,834 0	0,836 5	0,838 9
1,0	0,841 3	0,843 8	0,846 1	0,848 5	0,850 8	0,853 1	0,855 4	0,857 7	0,859 9	0,862 1
1,1	0,8643	0,866 5	0,868 6	0,878 8	0,872 9	0,874 9	0,877 0	0,879 0	0,881 0	0,883 0
1,2	0,884 9	0,886 9	0,888 8	0,890 7	0,892 5	0,894 4	0,896 2	0,898 0	0,899 7	0,901 5
1,3	0,903 2	0,904 9	0,906 6	0,908 2	0,909 9	0,911 5	0,913 1	0,914 7	0,9162	0,917 7
1,4	0,919 2	0,920 7	0,922 2	0,923 6	0,925 1	0,926 5	0,927 9	€,929 2	0,930 6	0,931 9
1,5	0,933 2	0,934 5	0,935 7	0,937 0	0,938 2	0,939 4	0,940 6	0,941 8	0,942 9	0,944 1
1,6	0,945 2	0,946 3	0,947 4	0,948 4	0,949 5	0,950 5	0,951 5	0,952 5	0,953 5	0,954 5
1,7	0,955 4	0,956 4	0,957 3	0,958 2	0,959 1	0,959 9	0,960 8	0,961 6	0,962 5	0,963 3
1,8	0,964 1	0,964 9	0,965 6	0,966 4	0,967 1	0,9678	0,968 6	0,969 3	0,969 9	0,970 6
1,9	0,971 3	0,971 9	0,972 6	0,973 2	0,973 8	0,974 4	0,975 0	0,975 6	0,976 1	8,9767
2,0	0,977 2	0,977 9	0,978 3	0,978 8	0,979 3	0,979 8	0,980 3	0,980 8	0,981 2	0,981 7
2,1	0,982 1	0,982 6	0,983 0	0,983 4	0,983 8	0,984 2	0,984 6	0,985 0	0,985 4	0,985 7
2,2	0,986 1	0,986 4	0,9868	0,9871	0,987 5	0,9878	0,988 1	0,988 4	0,988 7	0,989 0
2,3	0,989 3	0,989 6	0,989 8	0,990 1	0,990 4	0,990 6	0,990 9	0,991 1	0,9913	0,991 6
2,4	0,9918	0,992 0	0,992 2	0,992 5	0,992 7	0,992 9	0,993 1	0,993 2	0,993 4	0,993 6
2,5	0,993 8	0,994 0	0,994 1	0,9943	0,994 5	0,994 6	0,994 8	0,994 9	0,995 1	0,995 2
2,6	0,9953	0,995 5	0,995 6	0,9957	0,995 9	0,996 0	0,996 1	0,996 2	0,9963	0,996 4
2,7	0,996 5	0,996 6	0,9967	0,9968	0,9969	0,997 0	0,997 1	0,997 2	0,9973	0,997 4
2,8	0,997 4	0,997 5	0,9976	0,9977	0,9977	0,997 8	0,997 9	0,997 9	0,998 0	0,998 1
2,9	0,998 1	0,998 2	0,998 2	0,998 3	0,998 4	0,998 4	0,998 5	0,998 5	0,998 6	0,998 6

TABLE POUR LES GRANDES VALEURS DE t

	t 3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,8 4,0 4,5 Tr(0 0.998 65 0.999 04 0.999 31 0.999 52 0.999 66 0.999 76 0.999 841 0.999 928 0.999 968 0.999 997												
г	1	3.0	3.1	3.2	3,3	3,4	3,5	3,6	3,8	4,0	4,5		
ŀ	TIM	0.998 65	0,999 04	0,999 31	0,999 52	0,999 66	0,999 76	0,999 841	0,999 928	0,999 968	0,999 997		

Nota : $\Pi(-t) = 1 - \Pi(t)$

FORMULAIRE DE MATHÉMATIQUES

BTS : COMPTABILITÉ ET GESTION DES ORGANISATIONS

1. RELATIONS FONCTIONNELLES:

$$\ln(ab) = \ln a + \ln b, \text{ où } a > 0 \text{ et } b > 0$$

$$\exp(a+b) = \exp a \times \exp b$$

$$a^t = e^{t \ln a}$$
, où $a > 0$

$$t^{\alpha} = e^{\alpha \ln t}$$
, où $t > 0$

2. CALCUL DIFFERENTIEL ET INTEGRAL

a) Limites usuelles

Comportement à l'infini

$$\lim_{t\to +\infty} \ln t = +\infty \; ;$$

$$\lim e^t = +\infty ;$$

$$\lim e^t = 0 ;$$

Si
$$\alpha > 0$$
, $\lim_{t \to +\infty} t^{\alpha} = +\infty$; si $\alpha < 0$, $\lim_{t \to +\infty} t^{\alpha} = 0$

Comportement à l'origine

$$\lim_{t \to \infty} \ln t = -\infty$$

Si
$$\alpha > 0$$
, $\lim_{t \to 0} t^{\alpha} = 0$; si $\alpha < 0$, $\lim_{t \to 0} t^{\alpha} = +\infty$

Si
$$\alpha > 0$$
, $\lim_{t \to 0} t^{\alpha} \ln t = 0$.

Croissances comparées à l'infini

Si
$$\alpha > 0$$
, $\lim_{t \to +\infty} \frac{e^t}{t^{\alpha}} = +\infty$

Si
$$\alpha > 0$$
, $\lim_{t \to +\infty} \frac{\ln t}{t^{\alpha}} = 0$

b) Dérivées et primitives :

Fonctions usuelles

f(t)	f'(t)
ln t	$\frac{1}{t}$
e ^t	e ^t
$t^{\alpha} \ (\alpha \in \mathbb{R}^*)$	$\alpha t^{\alpha-1}$

Opérations

$$(u+v) = u'+v'$$

$$(ku)' = ku'$$

$$(uv)' = u'v + uv'$$

$$\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$$

$$(v \circ u)' = (v' \circ u)u$$

$$(e^u)' = e^u u'$$

$$(u+v)' = u' + v'$$

$$(ku)' = ku'$$

$$(uv)' = u'v + uv'$$

$$\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$$

$$\left(\ln u\right)' = \frac{u'}{u}, u \text{ a valeurs strictement positives}$$

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

$$\left(u^{\alpha}\right)' = \alpha u^{\alpha-1} u'$$

$$\left(u^{\alpha}\right) = \alpha u^{\alpha-1} u$$

c) Calcul intégral

Valeur moyenne de f sur [a, b]:

$$\frac{1}{b-a}\int_{a}^{b}f(t)\,\mathrm{d}t$$

Intégration par parties :
$$\int_{a}^{b} u(t) v'(t) dt = [u(t)v(t)]_{a}^{b} - \int_{a}^{b} u'(t) v(t) dt$$

3. PROBABILITES:

a) Loi binomiale
$$P(X = k) = C_n^k p^k q^{n-k}$$
 où $C_n^k = \frac{n!}{k!(n-k)!}$; $E(X) = np$; $\sigma(X) = \sqrt{npq}$

b) Loi normale

La loi normale centrée réduite est caractérisée par la densité de probabilité : $f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$

EXTRAITS DE LA TABLE DE LA FONCTION INTEGRALE DE LA LOI NORMALE CENTREE, REDUITE $\mathcal{N}(0,1)$

$$\Pi(t) = P(T \le t) = \int_{-\infty}^{t} f(x) \, \mathrm{d}x$$

1	0.00	0.01	0,02	0,03	0.04	0,05	0,06	0,07	0,08	0,09
0,0	0,500 0	0,504 0	0,508 0	0,512 0	0,516 0	0,519 9	0,523 9	0,527 9	0,531 9	0,535 9
0,1	0,539 8	0,543 8	0,547 8	0,5517	0,5557	0,559 6	0,563 6	0,567 5	0,571 4	0,5753
0,2	0,579 3	0,583 2	0,587 1	0,591 0	0,5948	0,5987	0,602 6	0,606 4	0,6103	0,614 1
0,3	0,6179	0,621 7	0,625 5	0,629 3	0,633 1	0,636 8	0,640 6	0,6443	0,648 0	0,651 7
0,4	0,655 4	0,659 1	0,662 8	0,6664	0,670 0	0,673 6	0,677 2	0,680 8	0,684 4	0,687 9
0,5	0,691 5	0,695 0	0,698 5	0,7019	0,7054	0,7088	0,712 3	0,715 7	0,719 0	0,722 4
0,6	0,725 7	0,729 0	0,732 4	0,7357	0,738 9	0,742 2	0,745 4	0,748 6	0,751 7	0,754 9
0,7	0,758 0	0,761 1	0,764 2	0,7673	0,770 4	0,773 4	0,7764	0,779 4	0,782 3	0,785 2
0,8	0,788 1	0,791 0	0,793 9	0,7967	0,799 5	0,802 3	0,805 1	0,807 8	0,810 6	0,813 3
0,9	0,815 9	0,818 6	0,821 2	0,823 8	0,825 4	0,828 9	0,831 5	0,834 0	0,836 5	0,838 9
1,0	0,841 3	0,843 8	0,846 1	0,848 5	0,850 8	0,853 1	0,855 4	0,857 7	0,859 9	0,862 1
1,1	0,8643	0,866 5	0,868 6	0,8708	0,872 9	0,874 9	0,877 0	0,879 0	0,881 0	0,883 0
1,2	0,884 9	0,886 9	0,888 8	0,890 7	0,892 5	0,894 4	0,896 2	0,898 0	0,899 7	0,901 5
1,3	0,903 2	0,904 9	0,906 6	0,908 2	0,909 9	0,911 5	0,913 1	0,9147	0,9162	0,9177
1,4	0,919 2	0,920 7	0,922 2	0,923 6	0,925 1	0,9265	0,927 9	0,929 2	0,930 6	0,931 9
1,5	0,933 2	0,934 5	0,935 7	0,937 0	0,938 2	0,939 4	0,940 6	0,941 8	0,942 9	0,944 1
1,6	6,945 2	0,9463	0,947 4	0,9484	0,949 5	0,950 5	0,951 5	0,952 5	0,953 5	0,954 5
1,7	0,955 4	0,956 4	0,957 3	0,958 2	0,959 1	0,959 9	0,960 8	0,961 6	0,962 5	0,963 3
1,8	0,9641	0,964 9	0,965 6	0,966 4	0,967 1	0,9678	0,968 6	0,9693	0,969 9	0,970 6
1,9	0,971 3	0,971 9	0,972 6	0,973 2	0,973 8	0,974 4	0,975 0	0,975 6	0,9761	0,9767
2,0	0,977 2	0,977 9	0,978 3	0,9788	0,979 3	0,9798	0,980 3	0,980 8	0,981 2	0,981 7
2,1	0,982 1	0,982 6	0,983 0	0,983 4	0,983 8	0,984 2	0,984 6	0,985 0	0,985 4	0,985 7
2,2	0,986 1	0,986 4	0,986 8	0,9871	0,987 5	0,987 8	0,988 1	0,988 4	0,988 7	0,989 0
2,3	0,989 3	0,989 6	0,989 8	0,990 1	0,996 4	0,990 6	0,990 9	0,991 1	0,991 3	0,991 6
2,4	0,9918	0,992 0	0,992 2	0,992 5	0,992 7	0,992 9	0,993 1	0,993 2	0,993 4	0,993 6
2,5	0,993 8	0,994 0	0,994 1	0,9943	0,994 5	0,994 6	0,994 8	0,994 9	0,995 1	0,995 2
2,6	0,9953	0,995 5	0,995 6	0,9957	0,9959	0,996 0	0,996 1	0,996 2	0,9963	0,996 4
2,7	0,996 5	0,996 6	0,996 7	0,9968	0,9969	0,997 0	0,997 1	0,997 2	0,997 3	0,997 4
2,8	0,997 4	0,997 5	0,997 6	0,9977	0,9977	0,9978	0,997 9	0,997 9	0,998 0	0,998 1
2,9	0,998 1	0,998 2	0,998 2	0,9983	0,998 4	0,998 4	0,998 5	0,998 5	0,998 6	0,998 6

TABLE POUR LES GRANDES VALEURS DE t

1	3.0	3.1	3,2	3.3	3,4	3,5	. 3,6	3,8	4,0	4,5
$\Pi(t)$	0,998 65	0,999 04	0,999 31	0,999 52	0,999 66	0,999 76	0,999 841	0,999 928	0,999 968	4,5 0,999 997

Nota : $\Pi(-t) = 1 - \Pi(t)$

BTS: CHIMISTE

1. RELATIONS FONCTIONNELLES

$$\begin{split} &\ln(ab) = \ln a + \ln b, \text{ où } a > 0 \text{ et } b > 0 \\ &\exp(a+b) = \exp a \times \exp b \\ &a^t = e^{t \ln a}, \text{ où } a > 0 \\ &t^\alpha = e^{\alpha \ln t}, \text{ où } t > 0 \\ &\cos(a+b) = \cos a \cos b - \sin a \sin b \\ &\sin(a+b) = \sin a \cos b + \cos a \sin b \\ &\cos(2t) = 2\cos^2 t - 1 = 1 - 2\sin^2 t \end{split}$$

$$\sin p + \sin q = 2\sin \frac{p+q}{2}\cos \frac{p-q}{2}$$

$$\sin p - \sin q = 2\sin \frac{p-q}{2}\cos \frac{p+q}{2}$$

 $\sin(2t) = 2\sin t \cos t$

$$\cos p + \cos q = 2\cos\frac{p+q}{2}\cos\frac{p-q}{2}$$
$$\cos p - \cos q = -2\sin\frac{p+q}{2}\sin\frac{p-q}{2}$$

$$\cos a \cos b = \frac{1}{2} \left[\cos(a+b) + \cos(a-b) \right]$$

$$\sin a \sin b = \frac{1}{2} \left[\cos(a-b) - \cos(a+b) \right]$$

$$\sin a \cos b = \frac{1}{2} \left[\sin(a+b) + \sin(a-b) \right]$$

$$e^{it} = \cos t + i \sin t$$

$$\cos t = \frac{1}{2} \left(e^{it} + e^{-it} \right)$$

$$\sin t = \frac{1}{2i} \left(e^{it} - e^{-it} \right)$$

$$e^{at} = e^{\alpha t} (\cos(\beta t) + i\sin(\beta t)), \text{ où } a = \alpha + i\beta$$

2. CALCUL DIFFERENTIEL ET INTEGRAL

a) Limites usuelles

Comportement à l'infini

$$\lim_{t \to +\infty} \ln t = +\infty ;$$

$$\lim_{t \to +\infty} e^t = +\infty ;$$

$$\lim_{t \to -\infty} \mathbf{e}^t = 0 \; ;$$

Si
$$\alpha > 0$$
, $\lim_{t \to +\infty} t^{\alpha} = +\infty$; si $\alpha < 0$, $\lim_{t \to +\infty} t^{\alpha} = 0$

Croissances comparées à l'infini

Si
$$\alpha > 0$$
, $\lim_{t \to +\infty} \frac{e^t}{t^{\alpha}} = +\infty$

Si
$$\alpha > 0$$
, $\lim_{t \to +\infty} \frac{\ln t}{t^{\alpha}} = 0$

Comportement à l'origine

$$\lim_{t\to 0} \ln t = -\infty$$

Si
$$\alpha > 0$$
, $\lim_{t \to 0} t^{\alpha} = 0$; si $\alpha < 0$, $\lim_{t \to 0} t^{\alpha} = +\infty$

Si
$$\alpha \ge 0$$
, $\lim_{t \to 0} t^{\alpha} \ln t = 0$.

b) Dérivées et primitives

Fonctions usuelles

f(t)	f'(t)	f(t)	f'(t)
ln t	$\frac{1}{t}$	Arc sin t	$\frac{1}{\sqrt{1-t^2}}$
e^t $t^{\alpha} \ (\alpha \in \mathbb{R})$	e^t $\alpha t^{\alpha-1}$	Arc tan t	$\frac{1}{1+t^2}$
sin t	cos t	$e^{at} \ (a \in \mathbb{C})$	ae ^{at}
cos t	-sin t		
tan <i>t</i>	$\frac{1}{\cos^2 t} = 1 + \tan^2 t$		

Opérations

$$(u+v)' = u'+v'$$

$$(ku)' = ku'$$

$$(uv)' = u'v+uv'$$

$$\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$$

$$\left(\frac{u}{v}\right)' = \frac{u'v-uv'}{v^2}$$

$$(v \circ u)' = (v' \circ u)u'$$

$$(e^u)' = e^u u'$$

$$(\ln u)' = \frac{u'}{u}, u \text{ à valeurs strictement positives}$$

$$\left(u^{\alpha}\right)' = \alpha u^{\alpha-1} u'$$

c) Calcul intégral

Valeur moyenne de f sur [a, b]: Intégration par parties:
$$\frac{1}{b-a} \int_a^b f(t) dt \qquad \qquad \int_a^b u(t) \ v'(t) dt = [u(t)v(t)]_a^b - \int_a^b u'(t) \ v(t) dt$$

d) Equations différentielles

Équations	Solutions sur un intervalle I
a(t) x' + b(t) x = 0	$f(t) = ke^{-G(t)}$ où G est une primitive de $t \mapsto \frac{b(t)}{a(t)}$
ax'' + bx' + cx = 0	Si $\Delta > 0$, $f(t) = \lambda e^{r_1 t} + \mu e^{r_2 t}$ où r_1 et r_2 sont les racines de l'équation caractéristique
équation caractéristique :	Si $\Delta = 0$, $f(t) = (\lambda t + \mu)e^{rt}$ où r est la racine double de l'équation caractéristique
$ar^2 + br + c = 0$	Si $\Delta < 0$, $f(t) = [\lambda \cos(\beta t) + \mu \sin(\beta t)]e^{\alpha t}$ où $r_1 = \alpha + i\beta$ et $r_2 = \alpha - i\beta$ sont les racines
de discriminant Δ	complexes conjuguées de l'équation caractéristique.

3. PROBABILITES

a) Loi binomiale
$$P(X = k) = C_n^k p^k q^{n-k}$$
 où $C_n^k = \frac{n!}{k!(n-k)!}$; $E(X) = np$; $\sigma(X) = \sqrt{npq}$

b) Loi de Poisson

$$P(X=k) = \frac{\mathrm{e}^{-\lambda} \, \lambda^k}{k!}$$

$$E(X) = \lambda$$

$$V(X) = \lambda$$

k 2	0,2	0,3	0,4	0,5	0,6
0	0,8187	0,7408	0,6703	0,6065	0,5488
1	0,1637	0,2222	0,2681	0,3033	0,3293
2	0,0164	0,0333	0,0536	0,0758	0,0988
3	0,0011	0,0033	0,0072	0,0126	0,0198
4	0,0000	0,0003	0,0007	0,0016	0,0030
5		0,0000	0,0001	0,0002	0,0004
6			0,0000	0,0000	0,0000

k λ	1	1.5	2	3	4	5	6	7	8	9	10
0	0.368	0.223	0.135	0.050	0.018	0.007	0.002	0.001	0.000	0.000	0.000
1	0.368	0.335	0.271	0.149	0.073	0.034	0.015	0.006	0.003	0.001	0.000
2	0.184	0.251	0.271	0.224	0.147	0.084	0.045	0.022	0.011	0.005	0.002
3	0.061	0.126	0.180	0.224	0,195	0.140	0.089	0.052	0.029	0.015	0.008
4	0.015	0.047	0.090	0.168	0.195	0.176	0.134	0.091	0.057	0.034	0.019
5	0.003	0.014	0.036	0.101	0.156	0.176	0.161	0.128	0.092	0.061	0.038
6	0.001	0.004	0.012	0.050	0.104	0.146	0.161	0.149	0.122	0.091	0.063
7	0.000	0.001	0.003	0.022	0.060	0.104	0.138	0.149	0.140	0.117	0.090
8		0.000	0.001	0.008	0.030	0.065	0.103	0.130	0.140	0.132	0.113
9			0.000	0.003	0.013	0.036	0.069	0.101	0.124	0.132	0,125
10				0.001	0.005	0.018	0.041	0.071	0.099	0.119	0.125
11				0.000	0.002	0.008	0.023	0.045	0.072	0.097	0.114
12					0.001	0.003	0.011	0.026	0.048	0.073	0.095
13					0.000	0.001	0.005	0.014	0.030	0.050	0.073
14						0.000	0.002	0.007	0.017	0.032	0.052
15							0.001	0.003	0.009	0.019	0.035
16							0.000	0.001	0.005	0.011	0.022
17								0.001	0.002	0.006	0.013
18								0,000	0.001	0.003	0.007
19									0.000	0.001	0.004
20										0.001	0.002
21										9,000	0.001
22											0.000

c) Loi exponentielle

Fonction de fiabilité: $R(t) = e^{-\lambda t}$ $E(X) = \frac{1}{\lambda}$ (M.T.B.F.) $\sigma(X) = \frac{1}{\lambda}$

$$E(X) = \frac{1}{\lambda}$$
 (M.T.B.F.

$$\sigma(X) = \frac{1}{\lambda}$$

d) Loi normale

La loi normale centrée réduite est caractérisée par la densité de probabilité : $f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$

EXTRAITS DE LA TABLE DE LA FONCTION INTEGRALE DE LA LOI NORMALE CENTREE, REDUITE $\mathcal{N}(0,1)$

$$\Pi(t) = P(T \le t) = \int_{-\infty}^{t} f(x) dx$$

				0 t											
t	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09					
0,0	0,500 0	0,504 0	0,508 0	0,512 0	0,516 0	0,519 9	0,523 9	0,527 9	0,531 9	0,535 9					
0,1	0,539 8	0,543 8	0,547 8	0,551 7	0,555 7	0,559 6	0,563 6	0,567 5	0,571 4	0,575 3					
0,2	0,579 3	0,583 2	0,587 1	0,591 0	0,594 8	0,598 7	0,602 6	0,606 4	0,610 3	0,614 1					
0,3	0,617 9	0,621 7	0,625 5	0,629 3	0,633 1	0,636 8	0,640 6	0,644 3	0,648 0	0,6517					
0,4	0,655 4	0,659 1	0,662 8	0,666 4	0,670 0	0,673 6	0,677 2	0,680 8	0,684 4	0,687 9					
0,5	0,691 5	0,695 0	0,698 5	0,701 9	0,705 4	0,708 8	0,712 3	0,715 7	0,719 0	0,722 4					
0,6	0,725 7	0,729 0	0,732 4	0,735 7	0,738 9	0,742 2	0,745 4	0,748 6	0,751 7	0,754 9					
0,7	0,758 0	0,761 1	0,764 2	0,767 3	0,770 4	0,773 4	0,776 4	0,779 4	0,782 3	0,785 2					
0,8	0,788 1	0,791 0	0,793 9	0,796 7	0,799 5	0,802 3	0,805 1	0,807 8	0,810 6	0,813 3					
0,9	0,815 9	0,818 6	0,821 2	0,823 8	0,825 4	0,828 9	0,831 5	0,834 0	0,836 5	0,838 9					
1,0	0,841 3	0,843 8	0,846 1	0,848 5	0,850 8	0,853 1	0,855 4	0,857 7	0,859 9	0,862 1					
1,1	0,864 3	0,866 5	0,868 6	0,870 8	0,872 9	0,874 9	0,877 0	0,879 0	0,881 0	0,883 0					
1,2	0,884 9	0,886 9	0,888 8	0,890 7	0,892 5	0,894 4	0,896 2	0,898 0	0,899 7	0,901 5					
1,3	0,903 2	0,904 9	0,906 6	0,908 2	0,909 9	0,911 5	0,913 1	0,914 7	0,916 2	0,917 7					
1,4	0,919 2	0,920 7	0,922 2	0,923 6	0,925 1	0,926 5	0,927 9	0,929 2	0,930 6	0,931 9					
1,5	0,933 2	0,934 5	0,935 7	0,937 0	0,938 2	0,939 4	0,940 6	0,941 8	0,942 9	0,944 1					
1,6	0,945 2	0,9463	0,947 4	0,948 4	0,949 5	0,950 5	0,951 5	0,952 5	0,953 5	0,954 5					
1,7	0,955 4	0,956 4	0,957 3	0,958 2	0,959 1	0,959 9	0,9608	0,961 6	0,962 5	0,963 3					
1,8	0,964 1	0,964 9	0,965 6	0,966 4	0,967 1	0,9678	0,968 6	0,969 3	0,969 9	0,970 6					
1,9	0,971 3	0,971 9	0,972 6	0,973 2	0,973 8	0,974 4	0,975 0	0,975 6	0,976 1	0,976 7					
2,0	0,977 2	0,977 9	0,978 3	0,978 8	0,979 3	0,979 8	0,980 3	0,980 8	0,981 2	0,981 7					
2,1	0,982 1	0,982 6	0,983 0	0,983 4	0,983 8	0,984 2	0,984 6	0,985 0	0,985 4	0,985 7					
2,2	0,986 1	0,9864	0,986 8	0,987 1	0,987 5	0,9878	0,988 1	0,988 4	0,988 7	0,989 0					
2,3	0,989 3	0,989 6	0,989 8	0,990 1	0,990 4	0,990 6	0,990 9	0,991 1	0,991 3	0,9916					
2,4	0,9918	0,992 0	0,992 2	0,992 5	0,992 7	0,992 9	0,993 1	0,993 2	0,993 4	0,993 6					
2,5	0,993 8	0,994 0	0,994 1	0,994 3	0,994 5	0,994 6	0,9948	0,994 9	0,995 1	0,995 2					
2,6	0,995 3	0,995 5	0,995 6	0,995 7	0,995 9	0,996 0	0,996 1	0,996 2	0,996 3	0,996 4					
2,7	0,996 5	0,996 6	0,996 7	0,9968	0,996 9	0,997 0	0,997 1	0,997 2	0,997 3	0,997 4					
2,8	0,997 4	0,997 5	0,997 6	0,997 7	0,997 7	0,9978	0,997 9	0,9979	0,998 0	0,998 1					
2,9	0,998 1	0,998 2	0,998 2	0,998 3	0,998 4	0,998 4	0,998 5	0,998 5	0,998 6	0,998 6					

TABLE POUR LES GRANDES VALEURS DE t

t	3,0	3,1	3,2	3,3	3,4	3,5	3,6	3,8	4,0	4,5			
$\Pi(t)$	0,998 65	0,999 04	0,999 31	0,999 52	0,999 66	0,999 76	0,999 841	0,999 928	0,999 968	0,999 997			

Nota: $\Pi(-t)=1-\Pi(t)$

BTS: CONCEPTION DE PRODUITS INDUSTRIELS

1. RELATIONS FONCTIONNELLES

$$\ln (ab) = \ln a + \ln b, \text{ où } a > 0 \text{ et } b > 0$$

$$\exp(a + b) = \exp a \times \exp b$$

$$a^t = e^{t \ln a}, \text{ où } a > 0$$

$$t^{\alpha} = e^{a \ln t}, \text{ où } t > 0$$

$$\cos(a + b) = \cos a \cos b - \sin a \sin b$$

$$\sin(a + b) = \sin a \cos b + \cos a \sin b$$

$$\cos(2t) = 2\cos^2 t - 1 = 1 - 2\sin^2 t$$

$$\sin(2t) = 2\sin t \cos t$$

$$\sin p + \sin q = 2\sin \frac{p + q}{2}\cos \frac{p - q}{2}$$

$$\sin p - \sin q = 2\sin \frac{p - q}{2}\cos \frac{p + q}{2}$$

$$\cos p + \cos q = 2\cos \frac{p + q}{2}\cos \frac{p - q}{2}$$

 $\cos p - \cos q = -2\sin\frac{p+q}{2}\sin\frac{p-q}{2}$

$$\cos a \cos b = \frac{1}{2} \left[\cos (a+b) + \cos (a-b) \right]$$

$$\sin a \sin b = \frac{1}{2} \left[\cos (a-b) - \cos (a+b) \right]$$

$$\sin a \cos b = \frac{1}{2} \left[\sin (a+b) + \sin (a-b) \right]$$

$$e^{it} = \cos t + i \sin t$$

$$\cos t = \frac{1}{2} \left(e^{it} + e^{-it} \right)$$

$$\sin t = \frac{1}{2i} \left(e^{it} - e^{-it} \right)$$

$$e^{at} = e^{\alpha t} \left(\cos (\beta t) + i \sin (\beta t) \right), \text{ où } a = \alpha + i\beta$$

2. CALCUL DIFFERENTIEL ET INTEGRAL

a) Limites usuelles

Comportement à l'infini

$$\begin{split} & \lim_{t \to +\infty} \ln t = +\infty \ ; \\ & \lim_{t \to +\infty} e^t = +\infty \ ; \\ & \lim_{t \to -\infty} e^t = 0 \ ; \\ & \sin \alpha > 0, \lim_{t \to +\infty} t^\alpha = +\infty \ ; \qquad \text{si } \alpha < 0, \lim_{t \to +\infty} t^\alpha = 0 \end{split}$$

Croissances comparées à l'infini

Si
$$\alpha > 0$$
, $\lim_{t \to +\infty} \frac{e^t}{t^{\alpha}} = +\infty$
Si $\alpha > 0$, $\lim_{t \to +\infty} \frac{\ln t}{t^{\alpha}} = 0$

Comportement à l'origine

$$\begin{split} & \lim_{t \to 0} \ln t = -\infty \\ & \text{Si } \alpha > 0, \ \lim_{t \to 0} t^{\alpha} = 0 \ ; \qquad & \text{si } \alpha < 0, \ \lim_{t \to 0} t^{\alpha} = +\infty \\ & \text{Si } \alpha > 0, \ \lim_{t \to 0} t^{\alpha} \ln t = 0 \ . \end{split}$$

b) Dérivées et primitives

Fonctions usuelles

f(t)	f'(t)	f(t)	f'(t)
ln t	$\frac{1}{t}$	Arc sin t	$\frac{1}{\sqrt{1-t^2}}$
e^t $t^{\alpha} \ (\alpha \in \mathbb{R})$	e^t $\alpha t^{\alpha-1}$	Arc tan t	$\frac{1}{1+t^2}$
sin t	cos t	$e^{at} \ (a \in \mathbb{C})$	ae ^{at}
cos t	-sin t		
tan t	$\frac{1}{\cos^2 t} = 1 + \tan^2 t$		

Opérations

$$(u+v)' = u'+v'$$

$$(ku)' = ku'$$

$$(uv)' = u'v+uv'$$

$$(\frac{1}{u})' = -\frac{u'}{u^2}$$

$$(uu)' = \frac{u'v-uv'}{v^2}$$

c) Calcul intégral

$$Valeur\ movenne\ de\ f\ sur\ [a\ ,b]:$$

$$\frac{1}{b-a}\int_a^b f(t)\ dt \qquad \qquad \int_a^b u(t)\ v'(t)\ dt = [u(t)v(t)]_a^b - \int_a^b u'(t)\ v(t)\ dt$$

d) Développements limités

$$\begin{aligned} \mathbf{e}^{t} &= 1 + \frac{t}{1!} + \frac{t^{2}}{2!} + \dots + \frac{t^{n}}{n!} + t^{n} \, \mathbf{\epsilon} \, (t) \\ &\frac{1}{1+t} = 1 - t + t^{2} + \dots + (-1)^{n} t^{n} + t^{n} \, \mathbf{\epsilon} \, (t) \\ &\ln(1+t) = t - \frac{t^{2}}{2} + \frac{t^{3}}{3} + \dots + (-1)^{n-1} \frac{t^{n}}{n} + t^{n} \, \mathbf{\epsilon} \, (t) \end{aligned} \qquad \begin{aligned} &\sin t = \frac{t}{1!} - \frac{t^{3}}{3!} + \frac{t^{5}}{5!} + \dots + (-1)^{p} \frac{t^{2p+1}}{(2p+1)!} + t^{2p+1} \, \mathbf{\epsilon} \, (t) \\ &\cos t = 1 - \frac{t^{2}}{2!} + \frac{t^{4}}{4!} + \dots + (-1)^{p} \frac{t^{2p}}{(2p)!} + t^{2p} \, \mathbf{\epsilon} \, (t) \\ &(1+t)^{\alpha} = 1 + \frac{\alpha}{1!} t + \frac{\alpha(\alpha-1)}{2!} t^{2} + \dots + \frac{\alpha(\alpha-1) \cdot (\alpha-n+1)}{n!} t^{n} + t^{n} \, \mathbf{\epsilon} \, (t) \end{aligned}$$

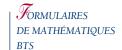
e) Equations différentielles

Équations	Solutions sur un intervalle I
a(t) x' + b(t) x = 0	$f(t) = ke^{-G(t)}$ où G est une primitive de $t \mapsto \frac{b(t)}{a(t)}$
ax'' + bx' + cx = 0	Si $\Delta > 0$, $f(t) = \lambda e^{r_1 t} + \mu e^{r_2 t}$ où r_1 et r_2 sont les racines de l'équation caractéristique
équation caractéristique :	Si $\Delta = 0$, $f(t) = (\lambda t + \mu)e^{rt}$ où r est la racine double de l'équation caractéristique
$ar^2 + br + c = 0$	Si $\Delta < 0$, $f(t) = [\lambda \cos(\beta t) + \mu \sin(\beta t)]e^{\alpha t}$ où $r_1 = \alpha + i\beta$ et $r_2 = \alpha - i\beta$ sont les racines
de discriminant Δ	complexes conjuguées de l'équation caractéristique.

3. PROBABILITES

a) Loi binomiale
$$P(X = k) = \mathbb{C}_n^k p^k q^{n-k}$$
 où $\mathbb{C}_n^k = \frac{n!}{k!(n-k)!}$; $E(X) = np$; $\sigma(X) = \sqrt{npq}$

b) Loi de Poisson

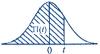

$$P(X=k) = \frac{e^{-\lambda} \lambda^k}{k!}$$

$$E(X) = \lambda$$

$$V(X) = \lambda$$

k	0,2	0,3	0,4	0,5	0,6
0	0,8187	0,7408	0,6703	0,6065	0,5488
1	0,1637	0,2222	0,2681	0,3033	0,3293
2	0,0164	0,0333	0,0536	0,0758	0,0988
3	0,0011	0,0033	0,0072	0,0126	0,0198
4	0,0000	0,0003	0,0007	0,0016	0,0030
5		0,0000	0,0001	0,0002	0,0004
6			0,0000	0,0000	0,0000

k^{λ}	1	1.5	2	3	4	5	6	7	8	9	10
0	0.368	0.223	0.135	0.050	0.018	0.007	0.002	0.001	0.000	0.000	0.000
1	0.368	0.335	0.271	0.149	0.073	0.034	0.015	0.006	0.003	0.001	0.000
2	0.184	0.251	0.271	0.224	0.147	0.084	0.045	0.022	0.011	0.005	0.002
3	0.061	0.126	0.180	0,224	0.195	0.140	0.089	0.052	0.029	0.015	0.008
4	0.015	0.047	0.090	0.168	0.195	0.176	0.134	0.091	0.057	0.034	0.019
5	0.003	0.014	0.036	0.101	0.156	0.176	0.161	0.128	0.092	0.061	0.038
6	0.001	0.004	0.012	0.050	0.104	0.146	0.161	0.149	0.122	0.091	0.063
7	0.000	0.001	0.003	0.022	0.060	0.104	0.138	0.149	0.140	0.117	0.090
8		0.000	0.001	0.008	0.030	0.065	0.103	0.130	0.140	0.132	0.113
9			0.000	0.003	0.013	0.036	0.069	0.101	0.124	0.132	0.125
10				0.001	0.005	0.018	0.041	0.071	0.099	0.119	0.125
11				0.000	0.002	0.008	0.023	0.045	0.072	0.097	0.114
12					0.001	0.003	0.011	0.026	0.048	0.073	0.095
13					0.000	0.001	0.005	0.014	0.030	0.050	0.073
14						0.000	0.002	0.007	0.017	0.032	0.052
15							0.001	0.003	0.009	0.019	0.035
16							0.000	0.001	0.005	0.011	0.022
17								0.001	0.002	0.006	0.013
18								0,000	0.001	0.003	0.007
19									0.000	0.001	0.004
20										0.001	0.002
21										0,000	0.001
22											0.000



c) Loi normale

La loi normale centrée réduite est caractérisée par la densité de probabilité : $f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$

EXTRAITS DE LA TABLE DE LA FONCTION INTEGRALE DE LA LOI NORMALE CENTREE, REDUITE $\mathcal{N}(0,1)$

$$\Pi(t) = P(T \le t) = \int_{-\infty}^{t} f(x) dx$$

						0	t			
t	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,500 0	0,504 0	0,508 0	0,512 0	0,516 0	0,5199	0,523 9	0,527 9	0,531 9	0,535 9
0,1	0,539 8	0,543 8	0,547 8	0,551 7	0,555 7	0,559 6	0,563 6	0,567 5	0,571 4	0,575 3
0,2	0,579 3	0,583 2	0,587 1	0,591 0	0,5948	0,598 7	0,602 6	0,606 4	0,610 3	0,614 1
0,3	0,617 9	0,621 7	0,625 5	0,629 3	0,633 1	0,636 8	0,640 6	0,644 3	0,648 0	0,651 7
0,4	0,655 4	0,659 1	0,662 8	0,666 4	0,670 0	0,673 6	0,677 2	0,680 8	0,684 4	0,687 9
0,5	0,691 5	0,695 0	0,698 5	0,701 9	0,705 4	0,708 8	0,712 3	0,715 7	0,719 0	0,722 4
0,6	0,725 7	0,729 0	0,732 4	0,735 7	0,738 9	0,742 2	0,745 4	0,748 6	0,751 7	0,754 9
0,7	0,758 0	0,761 1	0,764 2	0,767 3	0,770 4	0,773 4	0,776 4	0,779 4	0,782 3	0,785 2
0,8	0,788 1	0,791 0	0,793 9	0,796 7	0,799 5	0,802 3	0,805 1	0,8078	0,810 6	0,813 3
0,9	0,815 9	0,818 6	0,821 2	0,823 8	0,825 4	0,828 9	0,831 5	0,834 0	0,836 5	0,838 9
							1			
1,0	0,841 3	0,843 8	0,846 1	0,848 5	0,850 8	0,853 1	0,855 4	0,857 7	0,859 9	0,862 1
1,1	0,864 3	0,866 5	0,868 6	0,870 8	0,872 9	0,874 9	0,877 0	0,879 0	0,881 0	0,883 0
1,2	0,884 9	0,886 9	0,888 8	0,890 7	0,892 5	0,894 4	0,896 2	0,898 0	0,899 7	0,901 5
1,3	0,903 2	0,904 9	0,906 6	0,908 2	0,909 9	0,911 5	0,913 1	0,914 7	0,916 2	0,917 7
1,4	0,919 2	0,920 7	0,922 2	0,923 6	0,925 1	0,926 5	0,927 9	0,929 2	0,930 6	0,931 9
1,5	0,933 2	0,934 5	0,935 7	0,937 0	0,938 2	0,939 4	0,940 6	0,9418	0,942 9	0,944 1
1,6	0,945 2	0,946 3	0,947 4	0,948 4	0,949 5	0,950 5	0,951 5	0,952 5	0,953 5	0,954 5
1,7	0,955 4	0,956 4	0,957 3	0,958 2	0,959 1	0,959 9	0,960 8	0,961 6	0,962 5	0,963 3
1,8	0,964 1	0,964 9	0,965 6	0,966 4	0,967 1	0,967 8	0,968 6	0,969 3	0,969 9	0,970 6
1,9	0,971 3	0,971 9	0,972 6	0,973 2	0,973 8	0,974 4	0,975 0	0,975 6	0,976 1	0,9767
2,0	0,977 2	0,977 9	0,9783	0,978 8	0,979 3	0,979 8	0,980 3	0,980 8	0,981 2	0,981 7
2,1	0,982 1	0,982 6	0,983 0	0,983 4	0,983 8	0,984 2	0,984 6	0,985 0	0,985 4	0,985 7
2,2	0,986 1	0,986 4	0,9868	0,987 1	0,987 5	0,987 8	0,988 1	0,988 4	0,988 7	0,989 0
2,3	0,989 3	0,989 6	0,989 8	0,990 1	0,990 4	0,990 6	0,990 9	0,991 1	0,991 3	0,991 6
2,4	0,991 8	0,992 0	0,992 2	0,992 5	0,992 7	0,992 9	0,993 1	0,993 2	0,993 4	0,993 6
2,5	0,993 8	0,994 0	0,994 1	0,994 3	0,994 5	0,994 6	0,994 8	0,994 9	0,995 1	0,995 2
2,6	0,995 3	0,995 5	0,995 6	0,995 7	0,995 9	0,996 0	0,996 1	0,996 2	0,9963	0,996 4
2,7	0,996 5	0,996 6	0,996 7	0,996 8	0,996 9	0,997 0	0,997 1	0,997 2	0,997 3	0,997 4
2,8	0,997 4	0,997 5	0,997 6	0,997 7	0,997 7	0,997 8	0,997 9	0,997 9	0,998 0	0,998 1
2,9	0,998 1	0,998 2	0,998 2	0,998 3	0,998 4	0,998 4	0,998 5	0,998 5	0,998 6	0,998 6

TABLE POUR LES GRANDES VALEURS DE t

t	3,0	3,1	3,2	3,3	3,4	3,5	3,6	3,8	4,0	4,5
$\Pi(t)$	0,998 65	0,999 04	0,999 31	0,999 52	0,999 66	0,999 76	0,999 841	0,999 928	0,999 968	0,999 997

Nota : $\Pi(-t) = 1 - \Pi(t)$

BTS: GÉOMÈTRE-TOPOGRAPHE

1. RELATIONS FONCTIONNELLES

$$\ln(ab) = \ln a + \ln b, \text{ où } a > 0 \text{ et } b > 0$$

$$\exp(a+b) = \exp a \times \exp b$$

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

$$\sin(a+b) = \sin a \cos b + \cos a \sin b$$

$$\cos(2t) = 2\cos^2 t - 1 = 1 - 2\sin^2 t$$

$$\sin(2t) = 2\sin t \cos t$$

$$\sin p + \sin q = 2\sin \frac{p+q}{2}\cos \frac{p-q}{2}$$

$$\sin p - \sin q = 2\sin \frac{p-q}{2}\cos \frac{p+q}{2}$$

$$\cos p + \cos q = 2\cos \frac{p+q}{2}\cos \frac{p-q}{2}$$

$$\cos p - \cos q = -2\sin \frac{p+q}{2}\sin \frac{p-q}{2}$$

$$\cos a \cos b = \frac{1}{2} [\cos(a+b) + \cos(a-b)]$$

$$\sin a \sin b = \frac{1}{2} [\cos(a-b) - \cos(a+b)]$$

$$\sin a \cos b = \frac{1}{2} [\sin(a+b) + \sin(a-b)]$$

$$e^{it} = \cos t + i \sin t$$

$$\cos t = \frac{1}{2} (e^{it} + e^{-it}),$$

$$\sin t = \frac{1}{2i} (e^{it} - e^{-it})$$

$$e^{at} = e^{\alpha t} (\cos(\beta t) + i \sin(\beta t)), \text{ où } a = \alpha + i\beta$$

2. CALCUL DIFFERENTIEL ET INTEGRAL

a) Limites usuelles

Comportement à l'infini $\lim_{t \to +\infty} \ln t = +\infty ;$

$$\begin{split} & \lim_{t \to +\infty} \mathbf{e}^t = +\infty \; ; \\ & \lim_{t \to +\infty} \mathbf{e}^t = 0 \; ; \\ & \text{Si } \alpha > 0, \; \lim_{t \to +\infty} t^\alpha = +\infty \; ; \qquad \text{si } \alpha < 0, \; \lim_{t \to +\infty} t^\alpha = 0 \end{split}$$

Croissances comparées à l'infini

Si
$$\alpha > 0$$
, $\lim_{t \to +\infty} \frac{e^t}{t^{\alpha}} = +\infty$
Si $\alpha > 0$, $\lim_{t \to +\infty} \frac{\ln t}{t^{\alpha}} = 0$

Comportement à l'origine

$$\begin{split} &\lim_{t\to 0} \ln t = -\infty \\ &\operatorname{Si} \; \alpha > 0, \; \lim_{t\to 0} t^{\alpha} = 0 \; ; \qquad &\operatorname{si} \; \alpha < 0, \; \lim_{t\to 0} t^{\alpha} = +\infty \end{split}$$

$$&\operatorname{Si} \; \alpha > \theta, \; \lim_{t\to 0} t^{\alpha} \ln t = 0 \; .$$

b) Dérivées et primitives

Fonctions usuelles

f(t)	f'(t)	f(t)	f'(t)
ln t	$\frac{1}{t}$	Arc sin t	$\frac{1}{\sqrt{1-t^2}}$
e^t $t^{\alpha} \ (\alpha \in \mathbb{R})$	e^t $\alpha t^{\alpha-1}$	Arc tan t	$\frac{1}{1+t^2}$
sin t	cos t	$e^{at} \ (a \in \mathbb{C})$	ae ^{at}
cos t	-sin t		
tan t	$\frac{1}{\cos^2 t} = 1 + \tan^2 t$		

Opérations

$$(u+v)' = u'+v'$$

$$(ku)' = ku'$$

$$(uv)' = u'v+uv'$$

$$\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$$

$$\left(\frac{u}{v}\right)' = \frac{u'v-uv'}{v^2}$$

$$(v \circ u)' = (v' \circ u)u'$$

$$(e^u)' = e^u u'$$

$$(\ln u)' = \frac{u'}{u}$$
, u à valeurs strictement positives

$$\left(u^{\alpha}\right)' = \alpha u^{\alpha-1} u'$$

c) Calcul intégral

Valeur moyenne de f sur [a, b]:

$$\frac{1}{b-a} \int_a^b f(t) \, \mathrm{d}t$$

Intégration par parties :

$$\int_{a}^{b} u(t) \, v'(t) \, dt = [u(t)v(t)]_{a}^{b} - \int_{a}^{b} u'(t) \, v(t) \, dt$$

d) Développements limités

$$\begin{aligned} \mathbf{e}^{t} &= 1 + \frac{t}{1!} + \frac{t^{2}}{2!} + \dots + \frac{t^{n}}{n!} + t^{n} \, \varepsilon \left(t \right) \\ &\frac{1}{1+t} = 1 - t + t^{2} + \dots + \left(-1 \right)^{n} t^{n} + t^{n} \varepsilon \left(t \right) \\ &\ln(1+t) = t - \frac{t^{2}}{2} + \frac{t^{3}}{3} + \dots + \left(-1 \right)^{n-1} \frac{t^{n}}{n} + t^{n} \varepsilon \left(t \right) \end{aligned}$$

$$\begin{aligned} \mathbf{e}^t &= 1 + \frac{t}{1!} + \frac{t^2}{2!} + \dots + \frac{t^n}{n!} + t^n \varepsilon \left(t \right) \\ &\frac{1}{1+t} = 1 - t + t^2 + \dots + (-1)^n t^n + t^n \varepsilon \left(t \right) \\ &\ln(1+t) = t - \frac{t^2}{2} + \frac{t^3}{3} + \dots + (-1)^{n-1} \frac{t^n}{n} + t^n \varepsilon \left(t \right) \end{aligned} \qquad \begin{aligned} &\sin t = \frac{t}{1!} - \frac{t^3}{3!} + \frac{t^5}{5!} + \dots + (-1)^p \frac{t^{2p+1}}{(2p+1)!} + t^{2p+1} \varepsilon \left(t \right) \\ &\cos t = 1 - \frac{t^2}{2!} + \frac{t^4}{4!} + \dots + (-1)^p \frac{t^{2p}}{(2p)!} + t^{2p} \varepsilon \left(t \right) \\ &(1+t)^\alpha = 1 + \frac{t}{1!} t + \frac{\alpha(\alpha-1)}{2!} t^2 + \dots + \frac{\alpha(\alpha-1) \cdot (\alpha-n+1)}{n!} t^n + t^n \varepsilon \left(t \right) \end{aligned}$$

3. TRIGONOMETRIE SPHERIQUE

 $\cos a = \cos b \cos c + \sin b \sin c \cos A$

$$\frac{\sin a}{\sin A} = \frac{\sin b}{\sin B} = \frac{\sin c}{\sin C}$$

aire
$$(ABC) = (A+B+C-\pi)R^2$$

4. PROBABILITES

a) Loi binomiale
$$P(X = k) = C_n^k p^k q^{n-k}$$
 où $C_n^k = \frac{n!}{k!(n-k)!}$; $E(X) = np$; $\sigma(X) = \sqrt{npq}$

b) Loi de Poisson

$$P(X=k) = \frac{e^{-\lambda} \lambda^k}{k!}$$

$$E(X) = \lambda$$

$$V(X) = \lambda$$

k	0,2	0,3	0,4	0,5	0,6
0	0,8187	0,7408	0,6703	0,6065	0,5488
1	0,1637	0,2222	0,2681	0,3033	0,3293
2	0,0164	0,0333	0,0536	0,0758	0,0988
3	0,0011	0,0033	0,0072	0,0126	0,0198
4	0,0000	0,0003	0,0007	0,0016	0,0030
5		0,0000	0,0001	0,0002	0,0004
6			0,0000	0,0000	0,0000

k	1	1.5	2	3	4	5	6	7	8	9	10
0	0.368	0.223	0.135	0.050	0.018	0.007	0.002	0.001	0.000	0.000	0.000
1	0.368	0.335	0.271	0.149	0.073	0.034	0.015	0.006	0.003	0.001	0.000
2	0.184	0.251	0.271	0.224	0.147	0.084	0.045	0.022	0.011	0.005	0.002
3	0.061	0.126	0.180	0.224	0.195	0.140	0.089	0.052	0.029	0.015	0.008
4	0.015	0.047	0.090	0.168	0.195	0.176	0.134	0.091	0.057	0.034	0.019
5	0.003	0.014	0.036	0.101	0.156	0.176	0.161	0.128	0.092	0.061	0.038
6	0.001	0.004	0.012	0.050	0.104	0.146	0.161	0.149	0.122	0.091	0.063
7	0.000	0.001	0.003	0.022	0.060	0.104	0.138	0.149	0.140	0.117	0.090
8		0.000	0.001	0.008	0.030	0.065	0.103	0.130	0.140	0.132	0.113
9			6.000	0.003	0.013	0.036	0.069	0.101	0.124	0.132	0.125
10				0.001	0.005	0.018	0.041	0.071	0.099	0.119	0.125
11				0.000	0.002	0.008	0.023	0.045	0.072	0.097	0.114
12					0.001	0.003	0.011	0.026	0.048	0.073	0.095
13					0.000	6.001	0.005	0.014	0.030	0.050	0.073
14						0.000	0.002	0.007	0.017	0.032	0.052
15							0.001	0.003	0.009	0.019	0.035
16							0.000	0.001	0.005	0.011	0.022
17								0.001	0.002	0.006	0.013
18								0,000	0.001	0.003	0.007
19									0.000	0.001	0.004
20										0.001	0.002
21										0,000	0.001
22											0.000

c) Loi normale

La loi normale centrée réduite est caractérisée par la densité de probabilité : $f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$

EXTRAITS DE LA TABLE DE LA FONCTION INTEGRALE DE LA LOI NORMALE CENTREE, REDUITE $\mathcal{N}(0,1)$

$$\Pi(t) = P(T \le t) = \int_{-\infty}^{t} f(x) dx$$

						0	t			
t	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,500 0	0,504 0	0,508 0	0,512 0	0,5160	0,519 9	0,523 9	0,527 9	0,531 9	0,535 9
0,1	0,539 8	0,543 8	0,547 8	0,551 7	0,555 7	0,559 6	0,563 6	0,567 5	0,571 4	0,575 3
0,2	0,579 3	0,583 2	0,587 1	0,591 0	0,594 8	0,598 7	0,602 6	0,606 4	0,610 3	0,6141
0,3	0,6179	0,621 7	0,625 5	0,629 3	0,633 1	0,6368	0,640 6	0,644 3	0,648 0	0,651 7
0,4	0,655 4	0,659 1	0,662 8	0,6664	0,670 0	0,673 6	0,677 2	0,680 8	0,684 4	0,687 9
0,5	0,691 5	0,695 0	0,698 5	0,7019	0,705 4	0,7088	0,712 3	0,715 7	0,719 0	0,722 4
0,6	0,725 7	0,729 0	6,732 4	0,735 7	0,738 9	0,742 2	0,745 4	0,748 6	0,751 7	0,754 9
0,7	0,758 0	0,7611	0,764 2	0,767 3	6,770 4	0,773 4	0,776 4	0,779 4	0,782 3	0,785 2
0,8	0,788 1	0,791 0	0,793 9	0,7967	0,799 5	0,802 3	0,805 1	0,8078	0,810 6	0,813 3
0,9	0,815 9	0,818 6	0,821 2	0,823 8	0,825 4	0,828 9	0,831 5	0,834 0	0,836 5	0,838 9
1,0	0,8413	0,843 8	0,846 1	0,848 5	0,850 8	0,853 1	0,855 4	0,857 7	0,859 9	0,862 1
1,1	0,864 3	0,866 5	0,868 6	0,870 8	0,872 9	0,8749	0,877 0	0,879 0	0,881 0	0,883 0
1,2	0,884 9	0,886 9	0,888 8	0,890 7	0,892 5	0,894 4	0,896 2	0,898 0	0,899 7	0,901 5
1,3	0,903 2	0,904 9	0,906 6	0,908 2	0,909 9	0,911 5	0,913 1	0,9147	0,9162	0,9177
1,4	0,919 2	0,920 7	0,922 2	0,923 6	0,925 1	0,926 5	0,927 9	0,929 2	0,930 6	0,931 9
1,5	0,933 2	0,934 5	0,935 7	0,937 0	0,938 2	0,939 4	0,940 6	0,9418	0,942 9	0,944 1
1,6	0,945 2	0,9463	0,947 4	0,948 4	0,949 5	0,950 5	0,951 5	0,952 5	0,953 5	0,954 5
1,7	0,955 4	0,956 4	0,957 3	0,958 2	0,959 1	0,959 9	0,960 8	0,961 6	0,962 5	0,963 3
1,8	0,964 1	0,964 9	0,965 6	0,966 4	0,967 1	0,9678	0,968 6	0,969 3	6,969 9	0,970 6
1,9	0,971 3	0,971 9	0,972 6	0,973 2	0,973 8	0,974 4	0,975 0	0,975 6	0,976 1	0,9767
									1	
2,0	0,977 2	0,977 9	0,978 3	0,9788	0,979 3	0,9798	0,980 3	0,980 8	0,981 2	0,981 7
2,1	0,982 1	0,982 6	0,983 0	0,983 4	0,983 8	0,984 2	0,984 6	0,985 0	0,985 4	0,985 7
2,2	0,986 1	0,986 4	0,9868	0,987 1	0,987 5	0,987 8	0,988 1	0,988 4	0,988 7	0,989 0
2,3	0,989 3	0,989 6	0,989 8	0,990 1	0,990 4	0,990 6	0,990 9	0,991 1	0,991 3	0,991 6
2,4	0,991 8	0,992 0	0,992 2	0,992 5	0,992 7	0,992 9	0,993 1	0,993 2	0,993 4	0,993 6
2,5	0,993 8	0,994 0	0,994 1	0,994 3	0,994 5	0,994 6	0,994 8	0,994 9	0,995 1	0,995 2
2,6	0,9953	0,995 5	0,995 6	0,995 7	0,995 9	0,996 0	0,996 1	0,996 2	0,9963	0,996 4
2,7	0,996 5	0,996 6	0,996 7	0,9968	0,996 9	0,997 0	0,997 1	0,997 2	0,9973	0,997 4
2,8	0,9974	0,997 5	0,997 6	0,997 7	0,997 7	0,9978	0,997 9	0,997 9	0,998 0	0,998 1
2,9	0,998 1	0,998 2	0,998 2	0,998 3	0,998 4	0,998 4	0,998 5	0,998 5	0,998 6	0,998 6

TABLE POUR LES GRANDES VALEURS DE t

	3,0									
$\Pi(t)$	0,998 65	0,999 04	0,999 31	0,999 52	0,999 66	0,999 76	0,999 841	0,999 928	0,999 968	0,999 997

Nota: $\Pi(-t) = 1 - \Pi(t)$

BTS: INFORMATIQUE DE GESTION

1. RELATIONS FONCTIONNELLES:

$$\ln(ab) = \ln a + \ln b, \text{ où } a > 0 \text{ et } b > 0$$

$$a^t = e^{t \ln a}, \text{ où } a > 0$$

$$\exp(a + b) = \exp a \times \exp b$$

$$t^{\alpha} = e^{\alpha \ln t}, \text{ où } t > 0$$

2. CALCUL DIFFERENTIEL ET INTEGRAL

a) Limites usuelles

Comportement à l'infini

$$\begin{split} & \lim_{t \to +\infty} \ln t = +\infty \; ; \\ & \lim_{t \to +\infty} e^t = +\infty \; ; \\ & \lim_{t \to +\infty} e^t = 0 \; ; \\ & \sin \alpha > 0, \; \lim_{t \to +\infty} t^\alpha = +\infty \; ; \qquad \text{si } \alpha < 0, \; \lim_{t \to +\infty} t^\alpha = 0 \end{split}$$

Croissances comparées à l'infini

Si
$$\alpha > 0$$
, $\lim_{t \to +\infty} \frac{e^t}{t^{\alpha}} = +\infty$
Si $\alpha > 0$, $\lim_{t \to +\infty} \frac{\ln t}{t^{\alpha}} = 0$

b) Dérivées et primitives :

Fonctions usuelles

f(t)	f'(t)
$\ln t$	$\frac{1}{t}$
e ^t	e ^t
$t^{\alpha} \ (\alpha \in \mathbb{R}^*)$	$\alpha t^{\alpha-1}$

Opérations

$$(u+v)' = u'+v'$$

$$(ku)' = ku'$$

$$(uv)' = u'v+uv'$$

$$\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$$

$$\left(\frac{u}{v}\right)' = \frac{u'v-uv'}{v^2}$$

$$\begin{aligned} &\lim_{t\to 0} \ln t = -\infty \\ &\sin \alpha > 0, \ \lim_{t\to 0} t^{\alpha} = 0 \ ; \qquad &\sin \alpha < 0, \ \lim_{t\to 0} t^{\alpha} = +\infty \end{aligned}$$
 Si $\alpha > 0$, $\lim_{t\to 0} t^{\alpha} \ln t = 0$.

$$(v \circ u)' = (v' \circ u)u'$$

$$(e^u)' = e^u u'$$

$$(\ln u)' = \frac{u'}{u}, u$$
 à valeurs strictement positives
$$(u^a)' = \alpha u^{\alpha-1} u'$$

$$\left(u^{\alpha}\right)' = \alpha u^{\alpha-1} u'$$

c) Calcul intégral

Valeur moyenne de f sur [a, b]:
$$\frac{1}{b-a} \int_a^b f(t) \, \mathrm{d}t \qquad \qquad \int_a^b u(t) \, \nu'(t) \, \mathrm{d}t = [u(t)\nu(t)]_a^b - \int_a^b u'(t) \, \nu(t) \, \mathrm{d}t$$

d) Développements limités (PROGRAMME FACULTATIF)

$$\begin{aligned} \mathbf{e}^{t} &= 1 + \frac{t}{1!} + \frac{t^{2}}{2!} + \dots + \frac{t^{n}}{n!} + t^{n} \mathbf{\epsilon} \left(t \right) \\ &\frac{1}{1+t} = 1 - t + t^{2} + \dots + \left(-1 \right)^{n} t^{n} + t^{n} \mathbf{\epsilon} \left(t \right) \\ &\ln(1+t) = t - \frac{t^{2}}{2} + \frac{t^{3}}{3} + \dots + \left(-1 \right)^{n-1} \frac{t^{n}}{n} + t^{n} \mathbf{\epsilon} \left(t \right) \\ &\sin t = \frac{t}{1!} - \frac{t^{3}}{3!} + \frac{t^{5}}{5!} + \dots + \left(-1 \right)^{p} \frac{t^{2p+1}}{(2p+1)!} + t^{2p+1} \mathbf{\epsilon} \left(t \right) \\ &\cos t = 1 - \frac{t^{2}}{2!} + \frac{t^{4}}{4!} + \dots + \left(-1 \right)^{p} \frac{t^{2p}}{(2p)!} + t^{2p} \mathbf{\epsilon} \left(t \right) \\ &\left(1 + t \right)^{\alpha} = 1 + \frac{\alpha}{1!} t + \frac{\alpha(\alpha - 1)}{2!} t^{2} + \dots + \frac{\alpha(\alpha - 1) \dots (\alpha - n + 1)}{n!} t^{n} + t^{n} \mathbf{\epsilon} \left(t \right) \end{aligned}$$

e) Équations différentielles (PROGRAMME FACULTATIF)

Équations	Solutions sur un intervalle I
a(t)x'+b(t)x=0	$f(t) = ke^{-G(t)}$ où G est une primitive de $t \mapsto \frac{b(t)}{a(t)}$

3. PROBABILITES:

a) Lol binomiale
$$P(X=k) = \mathbb{C}_n^k p^k q^{n-k}$$
 où $\mathbb{C}_n^k = \frac{n!}{k!(n-k)!}$;

$$E(X) = np$$
 $\sigma(X) = \sqrt{npq}$

b) Loi de Poisson

$$P(X=k) = \frac{e^{-\lambda} \lambda^k}{k!}$$

$$E(X) = \lambda$$

$$V(X) = \lambda$$

k	0,2	0,3	0,4	0,5	0,6
0	0,8187	0,7408	0,6703	0,6065	0,5488
1	0,1637	0,2222	0,2681	0,3033	0,3293
2	9,0164	0,0333	0,0536	0,0758	0,0988
3	0,0011	0,0033	0,0072	0,0126	0,0198
4	0,0000	0,0003	0,0007	0,0016	0,0030
5		0,0000	0,0001	0,0002	0,0003
6			0,0000	0,0000	0,8000

<u> </u>											
k 2	1	1.5	2	3	4	5	6	7	8	9	10
0	0.368	0.223	0.135	0.050	0.018	0.007	0.002	0.001	0.000	0.000	0.000
1	0.368	0.335	0.271	0.149	0.073	0.034	0.015	0.006	0.003	0.001	0.000
2	0.184	0.251	0.271	0.224	0.147	0.084	0.045	0.022	0.011	0.005	0.002
3	0.061	0.126	0.180	0,224	0.195	0.140	0.089	0.052	0.029	0.015	0.008
4	0.015	0.047	0.090	0.168	0.195	0.176	0.134	0.091	0.057	0.034	0.019
5	0.003	0.014	0.036	0.101	0.156	0.176	0.161	0.128	0.092	0.061	0.038
6	0.001	0.004	0.012	0.050	0.104	0.146	0.161	0.149	0.122	0.091	0.063
7	0.000	0.001	0.003	0.022	0.060	0.104	0.138	0.149	0.140	0.117	0.090
8		0.000	0.001	800.0	0.030	0.065	0.103	0.130	0.140	0.132	0.113
9			0.000	0.003	0.013	0.036	0.069	0.101	0.124	0.132	0.125
10				0.001	0.005	0.018	0.041	0.071	0.099	0.119	0.125
11				0.000	0.002	0.008	0.023	0.045	0.072	0.097	0.114
12					0.001	0.003	0.011	0.026	0.048	9.073	0.095
13					0.000	0.001	0.005	9.014	0.030	0.050	0.073
14						0.000	0.002	0.007	0.017	0.032	0.052
15							0.001	0.003	9.009	0.019	0.035
16							0.000	0.001	0.005	0.011	0.022
17								0.901	0.002	0.006	0.013
18								0.000	0.001	0.003	0.007
19									0.000	0.001	0.004
20										0.001	0.002
21										0.000	0.001
22											0.000

c) Loi exponentielle (PROGRAMME FACULTATIF)

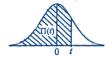
Fonction de fiabilité:
$$R(t) = e^{-\lambda t}$$
 $E(X) = \frac{1}{\lambda}$ (M.T.B.F.) $\sigma(X) = \frac{1}{\lambda}$

$$\sigma(X) = \frac{1}{2}$$

L B.O.N° 10
6 MARS
2003

FORMULAIRES

DE MATHÉMATIQUES


BTS

d) Loi normale

La loi normale centrée réduite est caractérisée par la densité de probabilité : $f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$

EXTRAITS DE LA TABLE DE LA FONCTION INTEGRALE DE LA LOI NORMALE CENTREE, REDUITE $\mathcal{N}(0,1)$

$$\Pi(t) = P(T \le t) = \int_{-\infty}^{t} f(x) dx$$

1	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	6,08	0,09
0,0	0,500 0	0,504 0	0,508 0	0,512 0	0,516 0	0,519 9	0,523 9	0,527 9	0,531 9	0,535 9
0,1	0,539 8	0,543 8	0,547 8	0,551 7	0,555 7	0,559 6	0,563 6	0,567 5	0,571 4	0,575 3
0,2	0,579 3	0,583 2	0,587 1	0,591 0	0,5948	0,598 7	9,602 6	0,6064	0,610 3	0,6141
0,3	0,617 9	0,621 7	0,625 5	0,629 3	0,633 1	0,636 8	8,640 6	0,6443	0,648 0	0,651 7
0,4	0,655 4	0,659 1	0,662 8	0,666 4	0,670 0	0,673 6	0,677 2	0,6808	0,684 4	0,687 9
0,5	0,691 5	0,695 0	0,698 5	0,701 9	0,705 4	0,7088	0,712 3	0,7157	0,719 0	0,722 4
0,6	0,725 7	0,729 0	0,732 4	0,735 7	0,738 9	0,742 2	0,745 4	0,748 6	0,751 7	0,754 9
0,7	0,758 0	0,761 1	0,764 2	0,7673	0,770 4	0,773 4	0,776 4	0,779 4	0,782 3	0,785 2
0,8	0,788 1	0,791 0	0,793 9	0,7967	0,799 5	0,802 3	0,805 1	0,8078	0,810 6	0,813 3
0,9	0,815 9	0,818 6	0,821 2	0,823 8	0,825 4	0,828 9	0,831 5	0,834 0	0,836 5	0,838 9
1,0	0,841 3	0,843 8	0,846 1	0,848 5	0,850 8	0,853 1	0,855 4	0,857 7	0,859 9	0,862 1
1,1	0,8643	0,866 5	0,868 6	0,870 8	0,872 9	0,874 9	0,877 0	0,879 0	0,881 0	0,883 0
1,2	0,884 9	0,886 9	0,888 8	0,890 7	0,892 5	0,894 4	0,896 2	0,898 0	0,899 7	0,901 5
1,3	0,903 2	0,9049	0,906 6	0,908 2	0,909 9	0,911 5	0,913 1	0,9147	0,9162	0,9177
1,4	0,9192	0,920 7	0,922 2	0,923 6	0,925 1	0,926 5	0,927 9	0,929 2	0,930 6	0,931 9
1,5	0,933 2	0,934 5	0,935 7	0,937 0	0,938 2	0,939 4	0,940 6	0,941 8	0,942 9	0,944 1
1,6	0,945 2	0,9463	0,947 4	0,948 4	0,949 5	0,950 5	0,951 5	0,952 5	0,953 5	0,954 5
1,7	0,955 4	0,956 4	0,957 3	0,958 2	0,959 1	0,959 9	0,960 8	0,961 6	0,962 5	0,963 3
1,8	0,9641	0,9649	0,965 6	0,966 4	0,967 1	0,967 8	0,968 6	0,969 3	0,9699	0,970 6
1,9	0,971 3	0,971 9	0,972 6	0,973 2	0,973 8	0,974 4	0,975 0	0,975 6	0,976 1	0,9767
								/		
2,0	0,977 2	0,977 9	0,978 3	0,9788	0,979 3	0,9798	9,980 3	0,980 8	0,981 2	0,981 7
2,1	0,982 1	0,982 6	0,983 0	0,983 4	0,983 8	0,984 2	0,984 6	0,985 0	0,985 4	0,985 7
2,2	0,9861	0,986 4	0,9868	0,987 1	0,987 5	0,987 8	0,988 1	0,988 4	0,9887	0,989 0
2,3	0,9893	0,989 6	0,989 8	0,990 1	0,990 4	0,990 6	0,990 9	0,991 1	0,991 3	0,991 6
2,4	0,9918	0,992 0	0,992 2	0,992 5	0,992 7	0,992 9	0,993 1	0,993 2	0,993 4	0,993 6
2,5	0,993 8	0,994 0	0,994 1	0,9943	0,994 5	0,994 6	0,9948	0,994 9	0,9951	0,995 2
2,6	0,995 3	0,995 5	0,995 6	0,995 7	0,9959	0,9960	0,996 1	0,996 2	0,996 3	0,996 4
2,7	0,996 5	0,996 6	0,9967	0,9968	0,996 9	0,997 0	0,997 1	0,997 2	0,997 3	0,997 4
2,8	0,9974	0,997 5	0,997 6	0,9977	0,997 7	0,9978	0,997 9	0,997 9	0,998 0	0,998 1
2,9	0,998 1	0,998 2	0,998 2	0,998 3	0,998 4	0,998 4	0,998 5	0,998 5	0,998 6	0,998 6

TABLE POUR LES GRANDES VALEURS DE t

t	3,0	3.1	3.2	3,3	3.4	3.5	3.6	3.8	4.0	4.5
TIGO	0,998 65	0.999 04	0.999 31	0.999 52	0.999 66	9.999 76	0.999 841	0.999 928	0.999 968	0.999 997
AL(P)	0,550.00	0,000	0,077.01	477702	0,555.00	992270	0022041	OJESS PAG	0,000	0,000

Nota: $\Pi(-t) = 1 - \Pi(t)$

BTS: OPTICIEN-LUNETIER

1. RELATIONS FONCTIONNELLES

$$\ln(ab) = \ln a + \ln b, \text{ où } a > 0 \text{ et } b > 0$$

$$\exp(a + b) = \exp a \times \exp b$$

2. CALCUL DIFFERENTIEL ET INTEGRAL

a) Limites usuelles

Comportement à l'infini

$$\begin{split} & \lim_{t \to +\infty} \ln t = +\infty \ ; \\ & t \to +\infty \end{split}$$

$$& \lim_{t \to +\infty} \mathrm{e}^t = +\infty \ ; \\ & \mathrm{Si} \ \alpha > 0, \ \lim_{t \to +\infty} t^\alpha = +\infty \ ; \qquad \mathrm{si} \ \alpha < 0, \ \lim_{t \to +\infty} t^\alpha = 0 \end{split}$$

Comportement à l'origine

$$\lim_{t \to 0} \ln t = -\infty$$
Si $\alpha > 0$, $\lim_{t \to 0} t^{\alpha} = 0$; si $\alpha < 0$, $\lim_{t \to 0} t^{\alpha} = +\infty$
Si $\alpha > 0$, $\lim_{t \to 0} t^{\alpha} \ln t = 0$.

Croissances comparées à l'infini

Si
$$\alpha > 0$$
, $\lim_{t \to +\infty} \frac{e^t}{t^{\alpha}} = +\infty$
Si $\alpha > 0$, $\lim_{t \to +\infty} \frac{\ln t}{t^{\alpha}} = 0$

b) Dérivées et primitives

Fonctions usuelles

f(t)	f'(t)	f(t)	f'(t)
ln t	$\frac{1}{t}$	tan t	$\frac{1}{\cos^2 t} = 1 + \tan^2 t$
e^t $t^{\alpha} \ (\alpha \in \mathbb{C})$	e^t $\alpha t^{\alpha-1}$	Arc sin t	$\frac{1}{\sqrt{1-t^2}}$
sin t	$\cos t$ $-\sin t$	Arc tan t	$\frac{1}{1+t^2}$

Opérations

$$(u+v)' = u'+v'$$

$$(ku)' = ku'$$

$$(uv)' = u'v+uv'$$

$$\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$$

$$\left(\frac{u}{v}\right)' = \frac{u'v-uv}{v^2}$$

$$(v \circ u)' = (v' \circ u)u'$$

$$\left(e^{u}\right)' = e^{u} u'$$

 $(\ln u)' = \frac{u'}{u}, \ u \text{ à valeurs strictement positives}$

$$\left(u^{\alpha}\right)' = \alpha u^{\alpha-1} u$$

c) Calcul intégral

Valeur moyenne de f sur [a, b]: $\frac{1}{b-a} \int_{a}^{b} f(t) dt$

$$\frac{1}{b-a}\int_{a}^{b}f(t)\,\mathrm{d}t$$

Intégration par parties :

$$\int_a^b u(t) \, v'(t) \, \mathrm{d}t = \left[u(t)v(t) \right]_a^b - \int_a^b u'(t) \, v(t) \, \mathrm{d}t$$

d) Développements limités

$$\sin t = t - \frac{t^3}{3!} + \frac{t^5}{5!} + \dots + (-1)^p \frac{t^{2p+1}}{(2p+1)!} + t^{2p+1} \varepsilon(t) \quad \left| \cos t = 1 - \frac{t^2}{2!} + \frac{t^4}{4!} + \dots + (-1)^p \frac{t^{2p}}{(2p)!} + t^{2p} \varepsilon(t) \right|$$

e) Équations différentielles

Équations	Solutions sur un intervalle I
a(t) x' + b(t) x = 0	$f(t) = ke^{-G(t)}$ où G est une primitive de $t \mapsto \frac{b(t)}{a(t)}$

3. PROBABILITES

a) Loi binomiale
$$P(X = k) = C_n^k p^k q^{n-k}$$
 où $C_n^k = \frac{n!}{k!(n-k)!}$; $E(X) = np$; $\sigma(X) = \sqrt{npq}$

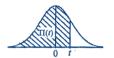
b) Loi de Poisson

$$P(X=k) = \frac{e^{-\lambda} \lambda^k}{k!}$$

$$E(X) = \lambda$$

$$V(X) = \lambda$$

k	0,2	0,3	0,4	0,5	0,6
0	0,8187	0,7408	0,6703	0,6065	0,5488
1	0,1637	0,2222	0,2681	0,3033	0,3293
2	0,0164	0,0333	0,0536	0,0758	0,0988
3	0,0011	0,0033	0,0072	0,0126	0,0198
4	0,0000	0,0003	0,0007	0,0016	0,0030
5		0,0000	0,0001	0,0002	9,0003
6			0,0000	0,0000	0,0000


						0			0,0000	0,0000	0,0000
k 2	1	1.5	2	3	4	5	6	7	8	9	10
0	0.368	0.223	0.135	0.050	0.918	0.007	0.002	0.001	0.000	0.000	0.000
1	0.368	0.335	0.271	0.149	0.073	0.034	0.015	0.006	0.003	0.001	0.000
2	0.184	0.251	0.271	0.224	0.147	0.084	0.045	0.022	0.011	0.005	9.002
3	0.061	0.126	0.180	0.224	0.195	0.140	0.089	0.052	0.029	0.015	0.008
4	0.015	0.047	0.090	0.168	0.195	0.176	0.134	0.091	0.057	0.034	0.019
5	0.003	0.014	0.036	0.101	0.156	0.176	0.161	0.128	0.092	0.061	0.038
6	0.001	0.004	0.012	0.050	0.104	0.146	0.161	0.149	0.122	0.091	0.063
7	0.000	0.001	0.003	0.022	0.060	0.104	0.138	0.149	0.140	0.117	0.090
8		0.000	0.001	0.008	0.030	0.065	0.103	0.130	0.140	0.132	0.113
9			0.000	0.003	0.013	0.036	0.069	0.101	0.124	0.132	0.125
10				0.001	0.005	0.018	0.041	0.071	0.099	0.119	0.125
11				0.000	0.002	800.0	0.023	0.045	0.072	0.097	0.114
12					0.001	0.003	9.011	0.026	0.048	0.073	0.095
13					0.000	0.001	0.005	0.014	0.030	0.050	0.073
14						0.000	0.002	0.007	0.017	0.032	0.052
15							0.001	0.003	0.009	0.019	0.035
16							0.000	0.001	0.005	0.011	0.022
17						1		0.001	0.002	0.006	0.013
18								0.000	0.001	0.003	0.007
19									0.000	0.001	0.004
20				l					ļ	0.001	0.002
21							1			0.000	0.001
22											0.000

c) Loi normale

La loi normale centrée réduite est caractérisée par la densité de probabilité : $f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$

EXTRAITS DE LA TABLE DE LA FONCTION INTEGRALE DE LA LOI NORMALE CENTREE, REDUITE $\mathcal{N}(0,1)$

$$\Pi(t) = P(T \le t) = \int_{-\infty}^{t} f(x) dx$$

t	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,500 0	0,504 0	0,508 0	0,512 0	0,516 0	0,519 9	0,523 9	0,527 9	0,531 9	0,535 9
0,1	0,539 8	0,543 8	0,547 8	0,551 7	0,555 7	0,559 6	0,563 6	0,567 5	0,571 4	0,575 3
0,2	0,579 3	0,583 2	0,587 1	0,591 0	0,594 8	0,598 7	0,602 6	0,606 4	0,610 3	0,6141
0,3	0,6179	0,621 7	0,625 5	0,629 3	0,633 1	0,636 8	0,640 6	0,644 3	0,648 0	0,651 7
0,4	0,655 4	0,659 1	0,662 8	0,666 4	0,670 0	0,673 6	0,677 2	0,680 8	0,684 4	0,687 9
0,5	0,691 5	0,695 0	0,698 5	0,7019	0,705 4	0,7088	0,712 3	0,715 7	0,719 0	0,722 4
0,6	0,725 7	0,729 0	0,732 4	0,735 7	0,738 9	0,742 2	0,745 4	0,748 6	0,751 7	0,754 9
0,7	0,758 0	0,761 1	0,764 2	0,7673	0,770 4	0,773 4	0,776 4	0,779 4	0,782 3	0,785 2
0,8	0,788 1	0,791 0	0,793 9	0,7967	0,799 5	0,802 3	0,805 1	0,807 8	0,810 6	0,813 3
0,9	0,8159	0,818 6	0,821 2	0,823 8	0,825 4	0,828 9	0,831 5	0,834 0	0,836 5	0,838 9
1,0	0,841 3	0,843 8	0,846 1	0,848 5	0,850 8	0,853 1	0,855 4	0,857 7	0,859 9	0,862 1
1,1	0,8643	0,866 5	0,868 6	0,870 8	0,872 9	0,8749	0,877 0	0,879 0	0,881 0	0,883 0
1,2	0,8849	0,886 9	0,888 8	0,890 7	0,892 5	0,894 4	0,896 2	0,898 0	0,899 7	0,901 5
1,3	0,903 2	0,904 9	0,906 6	0,908 2	0,909 9	0,911 5	0,913 1	0,9147	0,916 2	0,9177
1,4	0,919 2	0,920 7	0,922 2	0,923 6	0,925 1	0,926 5	0,927 9	0,929 2	0,930 6	0,931 9
1,5	0,933 2	0,934 5	0,935 7	0,937 0	0,938 2	0,939 4	0,940 6	0,941 8	0,942 9	0,944 1
1,6	0,945 2	0,946 3	0,947 4	0,948 4	0,949 5	0,950 5	0,951 5	0,952 5	0,953 5	0,954 5
1,7	0,955 4	0,956 4	0,9573	0,958 2	0,959 1	0,959 9	0,960 8	0,961 6	0,962 5	0,963 3
1,8	0,964 1	0,964 9	0,965 6	0,966 4	0,967 1	0,9678	0,968 6	0,969 3	0,969 9	0,970 6
1,9	0,9713	0,971 9	0,972 6	0,973 2	0,973 8	0,974 4	0,975 0	0,975 6	0,9761	0,9767
							, ,			
2,0	0,977 2	0,977 9	0,978 3	0,978 8	0,979 3	0,979 8	0,980 3	0,980 8	0,981 2	0,981 7
2,1	0,982 1	0,982 6	0,983 0	0,983 4	0,983 8	0,984 2	0,984 6	0,985 0	0,985 4	0,985 7
2,2	0,986 1	0,986 4	0,9868	0,987 1	0,987 5	0,9878	0,988 1	0,988 4	0,988 7	0,989 0
2,3	0,9893	0,989 6	0,989 8	0,990 1	0,990 4	0,990 6	0,990 9	0,991 1	0,9913	0,991 6
2,4	0,9918	0,992 0	0,992 2	0,992 5	0,992 7	0,992 9	0,993 1	0,993 2	0,993 4	0,993 6
2,5	0,993 8	0,994 0	0,994 1	0,994 3	0,994 5	0,994 6	0,9948	0,994 9	0,995 1	0,9952
2,6	0,9953	0,995 5	0,995 6	0,995 7	0,995 9	0,996 0	0,996 1	0,996 2	0,9963	0,9964
2,7	0,9965	0,996 6	0,9967	0,9968	0,995 9	0,997 0	0,997 1	0,997 2	0,9973	0,9974
2,8	0,9974	0,997 5	0,9976	0,997 7	0,9977	0,9978	0,997 9	0,997 9	0,998 0	0,998 1
2,9	0,9981	0,998 2	0,998 2	0,998 3	0,998 4	0,998 4	0,998 5	0,998 5	0,998 6	0,998 6

TABLE POUR LES GRANDES VALEURS DE t

. t	3,0	3,1	3,2	3,3	3,4	3,5	3,6	3,8	4,0	4,5
$\Pi(t)$	0,998 65	0,999 04	0,999 31	0,999 52	0,999 66	0,999 76	0,999 841	0,999 928	0,999 968	0,999 997

Nota: $\Pi(-t) = 1 - \Pi(t)$